Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(28): 18679-18690, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37403572

RESUMO

Combined experimental 57Fe Mössbauer and theoretical DFT study of a series of iron(II)-centered (pseudo)macrobicyclic analogs and homologs was performed. The field strength of the corresponding (pseudo)encapsulating ligand was found to affect both the spin state of a caged iron(II) ion and the electron density at its nucleus. In a row of the iron(II) tris-dioximates, passing from the non-macrocyclic complex to its monocapped pseudomacrobicyclic analog caused an increase both in the ligand field strength and in the electron density at the Fe2+ ion, and, therefore, a decrease in the isomer shift (IS) value (so-called "semiclathrochelate effect"). Its macrobicyclization, giving the quasiaromatic cage complex, caused a further increase in the two former parameters and a decrease in IS (so-called "macrobicyclic effect"). The trend of their IS values was successfully predicted using the performed quantum-chemical calculations and the corresponding linear correlation with the electron density at their 57Fe nuclei was plotted. A variety of different functionals can be successfully used for such excellent prediction. The slope of this correlation was found to be unaffected by the used functional. In contrast, the predictions of both the sign and the values of quadrupole splitting (QS) for them, based on the theoretical calculations of EFG tensors, were found to be a real great challenge, which could not be solved at the moment even in the case of these C3-pseudosymmetric iron(II) complexes with known XRD structures. The latter experimental data allowed us to deduce a sign of the QSs for them. The straightforwarded molecular design of a (pseudo)encapsulating ligand is proposed to control both the spin state and the redox characteristics of an encapsulated metal ion.

2.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37569760

RESUMO

Here, we report a new version of the extended Rate Constants Distribution (RCD) model for metal ion sorption, which includes complex-formation equilibria. With the RCD-complex model, one can predict sorbent performance in the presence of complexing agents using data on metal ion sorption from ligand-free solutions and a set of coefficients for sorption rate constants of different ionic species. The RCD-complex model was applied to breakthrough curves of Cu(II) sorption from acetate and tartrate solutions on polyethyleneimine (PEI) monolith cryogel at different flow rates and ionic speciation. We have shown that, despite the lower stability of Cu(II)-acetate complex, at high flow rates, acetate has a more pronounced negative effect on sorption kinetics than tartrate. The RCD model was successfully used to predict the shape of the breakthrough curves at an arbitrary acetate concentration but failed to predict Cu(II) sorption from tartrate solutions in a broad range of ligand concentrations. Since a twofold increase in sorption capacity was observed at low tartrate concentrations, the latter fact was related to an alteration in the sorption mechanism of Cu(II)-ions, which depended on Cu(II) ionic speciation. The obtained results emphasize the importance of information about sorption kinetics of different ionic forms for the optimization of sorption filter performance in the presence of complexing agents.


Assuntos
Criogéis , Polietilenoimina , Cinética , Tartaratos , Concentração de Íons de Hidrogênio , Metais , Íons , Acetatos , Adsorção , Cobre , Soluções
3.
Molecules ; 28(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36838620

RESUMO

The continuously increasing flow of toxic heavy metals to the environment due to intensive industrial activity and tightening requirements with regard to the content of metal ions in drinking and discharged waters urges the development of affordable and sensitive devices to the field control of pollutants. Here, we report a new thiated Rhodamine-lactam probe for Hg2+ detection and demonstrate how its sensitivity can be increased via the incorporation of the probe molecules into the optically transparent siloxane-acrylate coatings on polymethyl methacrylate and, alternatively, into the water-dispersible light-harvesting FRET nanoparticles (NPs), in which dye cations are separated by fluorinated tetraphenylborate anions. We have shown that the optimization of the FRET NPs composition had allowed it to reach the antenna effect of ~300 and fabricate "off/on" sensor for Hg2+ ion determination in aqueous solutions with the detection limit of ~100 pM, which is far below the maximum permissible concentration (MPC) of mercury in drinking water recommended by the World Health Organization. Although this work is more proof-of-concept than a ready-to-use analytical procedure, the suggested approaches to fabrication of the FRET NPs based on the popular rhodamine-lactam platform can be used as a background for the development of low-cost portable sensing devices for the extra-laboratory determination of hazardous metal ions.


Assuntos
Água Potável , Mercúrio , Nanopartículas , Água , Rodaminas , Cátions , Mercúrio/análise
4.
Molecules ; 27(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36500581

RESUMO

To understand how polyethyleneimine (PEI), as a ligand, affects structure and properties of the transition metals hexacyanoferrates (HCFs) immobilized in cross-linked PEI matrix, we have synthesized Cu(II), Zn(II), and Fe(III) HCFs via successive ion-exchange reactions with metal salts and K4[FeII(CN)6] or K3[FeIII(CN)6]. The structure and properties of the obtained materials in comparison with the crystalline HCF analogs were investigated with FT-IR, Mössbauer, and UV-Vis spectroscopy. Complete reduction of Fe(III) to Fe(II) by PEI in HCF(III) was confirmed. When synthesis was performed at pH favoring binding of precursor metal ions by PEI, cyano-bridged hybrids rather than polymer-HCFs composites were formed. Although the obtained hybrids did not demonstrate sorption activity toward cesium ions, known for crystalline HCFs, they are of interest for the other applications. SQUID measurements revealed a significant difference in magnetic properties of PEI-HCFs hybrids in comparison with crystalline HCFs. Due to the Fe(III) to Fe(II) reduction in HCF ions, Cu(II) and Fe(III) HCFs(III) lost the molecular magnets properties in PEI matrix, but magnetic ordering, including ferromagnet-antiferromagnet interactions, was observed in all hybrids over the broad temperature range.


Assuntos
Compostos Férricos , Polietilenoimina , Ligantes , Modelos Moleculares , Espectroscopia de Infravermelho com Transformada de Fourier , Metais/química , Íons , Ferrocianetos
5.
Molecules ; 25(20)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086660

RESUMO

Here we report the method of fabrication of supermacroporous monolith sorbents (cryogels) via covalent cross-linking of polyallylamine (PAA) with diglycidyl ether of 1,4-butandiol. Using comparative analysis of the permeability and sorption performance of the obtained PAA cryogels and earlier developed polyethyleneimine (PEI) cryogels, we have demonstrated the advantages and disadvantages of these polymers as sorbents of heavy metal ions (Cu(II), Zn(II), Cd(II), and Ni(II)) in fixed-bed applications and as supermacroporous matrices for the fabrication of composite cryogels containing copper ferrocyanide (CuFCN) for cesium ion sorption. Applying the rate constant distribution (RCD) model to the kinetic curves of Cu(II) ion sorption on PAA and PEI cryogels, we have elucidated the difference in sorption/desorption rates and affinity constants of these materials and showed that physical sorption contributed to the Cu(II) uptake by PAA, but not to that by PEI cryogels. It was shown that PAA cryogels had significantly higher selectivity for Cu(II) sorption in the presence of Zn(II) and Cd(II) ions in comparison with that of PEI cryogels, while irreversible sorption of Co(II) ions by PEI can be used for the separation of Ni(II) and Co(II) ions. Using IR and Mössbauer spectroscopy, we have demonstrated that strong complexation of Cu(II) ions with PEI significantly affects the in situ formation of Cu(II) ferrocyanide nanosorbents leading to their inefficiency for Cs+ ions selective uptake, whereas PAA cryogel was applicable for the fabrication of efficient monolith composites via the in situ formation of CuFCN or loading of ex situ formed CuFCN colloids.


Assuntos
Adsorção/efeitos dos fármacos , Quelantes/química , Criogéis/química , Metais Pesados/isolamento & purificação , Concentração de Íons de Hidrogênio , Íons/química , Íons/isolamento & purificação , Metais Pesados/química , Poliaminas/química , Poli-Hidroxietil Metacrilato/química , Desintoxicação por Sorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA