Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 293(15): 5695-5704, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29475946

RESUMO

Enzymes at the phosphoenolpyruvate (PEP)-pyruvate-oxaloacetate or anaplerotic (ANA) node control the metabolic flux to glycolysis, gluconeogenesis, and anaplerosis. Here we used genetic, biochemical, and 13C isotopomer analysis to characterize the role of the enzymes at the ANA node in intracellular survival of the world's most successful bacterial pathogen, Mycobacterium tuberculosis (Mtb). We show that each of the four ANA enzymes, pyruvate carboxylase (PCA), PEP carboxykinase (PCK), malic enzyme (MEZ), and pyruvate phosphate dikinase (PPDK), performs a unique and essential metabolic function during the intracellular survival of Mtb. We show that in addition to PCK, intracellular Mtb requires PPDK as an alternative gateway into gluconeogenesis. Propionate and cholesterol detoxification was also identified as an essential function of PPDK revealing an unexpected role for the ANA node in the metabolism of these physiologically important intracellular substrates and highlighting this enzyme as a tuberculosis (TB)-specific drug target. We show that anaplerotic fixation of CO2 through the ANA node is essential for intracellular survival of Mtb and that Mtb possesses three enzymes (PCA, PCK, and MEZ) capable of fulfilling this function. In addition to providing a back-up role in anaplerosis we show that MEZ also has a role in lipid biosynthesis. MEZ knockout strains have an altered cell wall and were deficient in the initial entry into macrophages. This work reveals that the ANA node is a focal point for controlling the intracellular replication of Mtb, which goes beyond canonical gluconeogenesis and represents a promising target for designing novel anti-TB drugs.


Assuntos
Proteínas de Bactérias , Macrófagos , Viabilidade Microbiana , Mycobacterium tuberculosis , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Células THP-1
2.
BMC Genomics ; 16: 479, 2015 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-26115658

RESUMO

BACKGROUND: Mycobacteria inhabit diverse niches and display high metabolic versatility. They can colonise both humans and animals and are also able to survive in the environment. In order to succeed, response to environmental cues via transcriptional regulation is required. In this study we focused on the TetR family of transcriptional regulators (TFTRs) in mycobacteria. RESULTS: We used InterPro to classify the entire complement of transcriptional regulators in 10 mycobacterial species and these analyses showed that TFTRs are the most abundant family of regulators in all species. We identified those TFTRs that are conserved across all species analysed and those that are unique to the pathogens included in the analysis. We examined genomic contexts of 663 of the conserved TFTRs and observed that the majority of TFTRs are separated by 200 bp or less from divergently oriented genes. Analyses of divergent genes indicated that the TFTRs control diverse biochemical functions not limited to efflux pumps. TFTRs typically bind to palindromic motifs and we identified 11 highly significant novel motifs in the upstream regions of divergently oriented TFTRs. The C-terminal ligand binding domain from the TFTR complement in M. tuberculosis showed great diversity in amino acid sequence but with an overall architecture common to other TFTRs. CONCLUSION: This study suggests that mycobacteria depend on TFTRs for the transcriptional control of a number of metabolic functions yet the physiological role of the majority of these regulators remain unknown.


Assuntos
Proteínas de Bactérias/genética , Sequência Conservada/genética , Variação Genética/genética , Mycobacterium/genética , Transcrição Gênica/genética , Sequência de Aminoácidos/genética , Sítios de Ligação/genética , Ligantes
3.
Microbiology (Reading) ; 156(Pt 5): 1362-1371, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20167624

RESUMO

Mycobacterium tuberculosis is able to use a variety of carbon sources in vivo and current knowledge suggests that cholesterol is used as a carbon source during infection. The catabolized cholesterol is used both as an energy source (ATP generation) and as a source of precursor molecules for the synthesis of complex methyl-branched fatty acids. In previous studies, we described a TetR-type transcriptional repressor, kstR, that controls the expression of a number of genes involved in cholesterol catabolism. In this study, we describe a second TetR-type repressor, which we call kstR2. We knocked this gene out in Mycobacterium smegmatis and used microarrays and quantitative RT-PCR to examine the effects on gene expression. We identified a palindromic regulatory motif for KstR2, showed that this motif is present in three promoter regions in mycobacteria and rhodococcus, and demonstrated binding of purified KstR2 to the motif. Using a combination of motif location analysis, gene expression analysis and the examination of gene conservation, we suggest that kstR2 controls the expression of a 15 gene regulon. Like kstR, kstR2 and the kstR2 regulon are highly conserved among the actinomycetes and studies in rhodococcus suggest a role for these genes in cholesterol catabolism. The functional significance of the regulon and implications for the control of cholesterol utilization are discussed.


Assuntos
Proteínas de Bactérias/fisiologia , Colesterol/metabolismo , Mycobacterium smegmatis/metabolismo , Proteínas Repressoras/fisiologia , Motivos de Aminoácidos , Sítios de Ligação , Sequência Conservada , Regulação da Expressão Gênica , Sequências Repetidas Invertidas , Mycobacterium/genética , Mycobacterium/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Regulon , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie
4.
FEMS Microbiol Lett ; 345(2): 132-40, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23763300

RESUMO

This study describes how bkaR, a highly conserved mycobacterial TetR-like transcriptional repressor, regulates a number of nearby genes that have associations with branched-chain keto-acid metabolism. bkaR (MSMEG_4718) was deleted from the nonpathogenic species Mycobacterium smegmatis, and changes in global gene expression were assessed using microarray analysis and reporter gene studies. bkaR was found to directly control the expression of 10 genes in M. smegmatis, and its ortholog in Mycobacterium tuberculosis (Rv2506) is predicted to control at least 12 genes. A conserved operator motif was identified, and binding of purified recombinant M. tuberculosis BkaR to the motif was demonstrated. Analysis of the stoichiometry of binding showed that BkaR binds to the motif as a dimer.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Cetoácidos/metabolismo , Mycobacterium smegmatis/genética , Óperon , Proteínas Repressoras/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Mycobacterium smegmatis/química , Mycobacterium smegmatis/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/química , Proteínas Repressoras/genética
5.
J Microbiol Methods ; 83(1): 34-41, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20650290

RESUMO

Targeted mutagenesis is one of the major tools for determining the function of a given gene and its involvement in bacterial pathogenesis. In mycobacteria, gene deletion is often accomplished by using allelic exchange techniques that commonly utilise a suicide delivery vector. We have adapted a widely-used suicide delivery vector (p1NIL) for cloning two flanking regions of a gene using ligation independent cloning (LIC). The pNILRB plasmid series produced allow a faster, more efficient and less laborious cloning procedure. In this paper we describe the making of pNILRB5, a modified version of p1NIL that contains two pairs of LIC sites flanking either a sacB or a lacZ gene. We demonstrate the success of this technique by generating 3 mycobacterial mutant strains. These vectors will contribute to more high-throughput methods of mutagenesis.


Assuntos
Clonagem Molecular/métodos , Vetores Genéticos/genética , Mutagênese , Mycobacterium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA