Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Zoo Biol ; 42(2): 175-184, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36205245

RESUMO

Genome resource banks (GRBs) have the potential to preserve the genetic diversity of a species over time, yet they are rarely utilized as effective components of conservation breeding programs. Advances have been made in reproductive biology, collection and storage techniques, and use of stored gametes for achieving successful reproduction, but there are few guidelines for integrating GRBs into established breeding programs. Here we present basic guidelines, focusing on strategies for the collection, maintenance, and use of semen GRBs for protecting genetic diversity. These guidelines should be applied in the context of the specific purposes and roles of a breeding program's GRB, which will differ among species depending on vulnerability to loss and the status of rescue and conservation efforts. We recommend establishing up to three types of collections: (1) a National Reserve to preserve a species' genetic diversity, to be used only as a last resort; (2) a Savings Account to be used periodically to invigorate a genetically depauperate population; and (3) a Checking Account to be used as a regular part of the breeding program. We present methods for identifying donors to maximize genetic diversity in a GRB, as well as strategies for maintaining and optimally using GRBs.


Assuntos
Conservação dos Recursos Naturais , Criopreservação , Animais , Conservação dos Recursos Naturais/métodos , Animais de Zoológico , Reprodução , Variação Genética
2.
Conserv Biol ; 34(6): 1416-1425, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32233087

RESUMO

Maintaining a living plant collection is the most common method of ex situ conservation for plant species that cannot be seed banked (i.e., exceptional species). Viability of living collections, and their value for future conservation efforts, can be limited without coordinated efforts to track and manage individuals across institutions. Using a pedigree-focused approach, the zoological community has established an inter-institutional infrastructure to support long-term viability of captive animal populations. We assessed the ability of this coordinated metacollection infrastructure to support the conservation of 4 plant species curated in living collections at multiple botanic gardens around the world. Limitations in current practices include the inability to compile, share, and analyze plant collections data at the individual level, as well as difficulty in tracking original provenance of ex situ material. The coordinated metacollection framework used by zoos can be adopted by the botanical community to improve conservation outcomes by minimizing the loss of genetic diversity in collections. We suggest actions to improve ex situ conservation of exceptional plant species, including developing a central database to aggregate data and track unique individuals of priority threatened species among institutions and adapting a pedigree-based population management tool that incorporates life-history aspects unique to plants. If approached collaboratively across regional, national, and global scales, these actions could transform ex situ conservation of threatened plant species.


Aplicación del Modelo Zoológico a la Conservación de Especies Excepcionales de Plantas Amenazadas Resumen El mantenimiento de una colección de plantas vivas es el método más común para de conservación ex situ para especies de plantas que no pueden almacenarse en bancos de semillas (i. e., especies excepcionales). La viabilidad de las colecciones vivientes, junto con el valor que representan para los futuros esfuerzo de conservación, puede estar limitada si no existen esfuerzos coordinados para rastrear y manejar a los individuos entre las instituciones. Mediante una estrategia enfocada en el linaje, la comunidad de zoológicos ha establecido una infraestructura interinstitucional que respalda la viabilidad a largo plazo de las poblaciones de animales en cautiverio. Evaluamos la habilidad de esta infraestructura coordinada de metacolecciones para apoyar en la conservación de cuatro especies de plantas curadas en colecciones vivientes en varios jardines botánicos de todo el mundo. Las limitaciones de las prácticas contemporáneas incluyen la incapacidad de recopilar, compartir y analizar los datos de las colecciones de plantas a nivel individual, así como la dificultad de rastrear la procedencia original del material ex situ. El marco de trabajo de metacolecciones coordinadas que utilizan los zoológicos puede ser adoptado por la comunidad botánica para mejorar los resultados de conservación al minimizar la pérdida de la diversidad genética que ocurre en las colecciones. Sugerimos acciones que aumenten la conservación ex situ de las especies excepcionales de plantas. Estas acciones incluyen el desarrollo de una base de datos central para acumular datos y rastrear entre las instituciones a los individuos únicos de las especies amenazadas prioritarias y la adaptación de una herramienta de manejo poblacional basada en el linaje que incorpore los aspectos únicos de la historia de vida de las plantas. Si estas acciones se plantean colaborativamente a escala regional, nacional y global, podrían transformar la conservación ex situ de las especies amenazadas de plantas.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Animais , Jardinagem , Plantas/genética , Sementes
3.
Yale J Biol Med ; 91(4): 491-501, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30588214

RESUMO

Humans are responsible for a cataclysm of species extinction that will change the world as we see it, and will adversely affect human health and wellbeing. We need to understand at individual and societal levels why species conservation is important. Accepting the premise that species have value, we need to next consider the mechanisms underlying species extinction and what we can do to reverse the process. One of the last stages of species extinction is the reduction of a species to a few populations of relatively few individuals, a scenario that leads invariably to inbreeding and its adverse consequences, inbreeding depression. Inbreeding depression can be so severe that populations become at risk of extinction not only because of the expression of harmful recessive alleles (alleles having no phenotypic effect when in the heterozygous condition, e.g., Aa, where a is the recessive allele), but also because of their inability to respond genetically with sufficient speed to adapt to changing environmental conditions. However, new conservation approaches based on foundational quantitative and population genetic theory advocate for active genetic management of fragmented populations by facilitating gene movements between populations, i.e., admixture, or genetic rescue. Why species conservation is critical, the genetic consequences of small population size that often lead to extinction, and possible solutions to the problem of small population size are discussed and presented.


Assuntos
Ecossistema , Genética Populacional/métodos , Animais , Biodiversidade , Humanos , Endogamia
4.
Proc Biol Sci ; 284(1861)2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855362

RESUMO

Sex ratio allocation has important fitness consequences, and theory predicts that parents should adjust offspring sex ratio in cases where the fitness returns of producing male and female offspring vary. The ability of fathers to bias offspring sex ratios has traditionally been dismissed given the expectation of an equal proportion of X- and Y-chromosome-bearing sperm (CBS) in ejaculates due to segregation of sex chromosomes at meiosis. This expectation has been recently refuted. Here we used Peromyscus leucopus to demonstrate that sex ratio is explained by an exclusive effect of the father, and suggest a likely mechanism by which male-driven sex-ratio bias is attained. We identified a male sperm morphological marker that is associated with the mechanism leading to sex ratio bias; differences among males in the sperm nucleus area (a proxy for the sex chromosome that the sperm contains) explain 22% variation in litter sex ratio. We further show the role played by the sperm nucleus area as a mediator in the relationship between individual genetic variation and sex-ratio bias. Fathers with high levels of genetic variation had ejaculates with a higher proportion of sperm with small nuclei area. This, in turn, led to siring a higher proportion of sons (25% increase in sons per 0.1 decrease in the inbreeding coefficient). Our results reveal a plausible mechanism underlying unexplored male-driven sex-ratio biases. We also discuss why this pattern of paternal bias can be adaptive. This research puts to rest the idea that father contribution to sex ratio variation should be disregarded in vertebrates, and will stimulate research on evolutionary constraints to sex ratios-for example, whether fathers and mothers have divergent, coinciding, or neutral sex allocation interests. Finally, these results offer a potential explanation for those intriguing cases in which there are sex ratio biases, such as in humans.


Assuntos
Herança Paterna , Razão de Masculinidade , Espermatozoides/fisiologia , Animais , Evolução Biológica , Feminino , Variação Genética , Masculino , Reprodução
5.
J Hered ; 108(5): 574-582, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28398480

RESUMO

Understanding and estimating inbreeding is essential for managing threatened and endangered wildlife populations. However, determination of inbreeding rates in natural populations is confounded by incomplete parentage information. We present an approach for quantifying inbreeding rates for populations with incomplete parentage information. The approach exploits knowledge of pedigree configurations that lead to inbreeding coefficients of F = 0.25 and F = 0.125, allowing for quantification of Pr(I|k): the probability of observing pedigree I given the fraction of known parents (k). We developed analytical expressions under simplifying assumptions that define properties and behavior of inbreeding rate estimators for varying values of k. We demonstrated that inbreeding is overestimated if Pr(I|k) is not taken into consideration and that bias is primarily influenced by k. By contrast, our new estimator, incorporating Pr(I|k), is unbiased over a wide range of values of k that may be observed in empirical studies. Stochastic computer simulations that allowed complex inter- and intragenerational inbreeding produced similar results. We illustrate the effects that accounting for Pr(I|k) can have in empirical data by revisiting published analyses of Arabian oryx (Oryx leucoryx) and Red deer (Cervus elaphus). Our results demonstrate that incomplete pedigrees are not barriers for quantifying inbreeding in wild populations. Application of our approach will permit a better understanding of the role that inbreeding plays in the dynamics of populations of threatened and endangered species and may help refine our understanding of inbreeding avoidance mechanisms in the wild.


Assuntos
Cervos/genética , Genética Populacional/métodos , Endogamia , Modelos Genéticos , Animais , Simulação por Computador , Espécies em Perigo de Extinção , Linhagem
6.
Conserv Biol ; 25(3): 465-75, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21486369

RESUMO

Fragmentation of animal and plant populations typically leads to genetic erosion and increased probability of extirpation. Although these effects can usually be reversed by re-establishing gene flow between population fragments, managers sometimes fail to do so due to fears of outbreeding depression (OD). Rapid development of OD is due primarily to adaptive differentiation from selection or fixation of chromosomal variants. Fixed chromosomal variants can be detected empirically. We used an extended form of the breeders' equation to predict the probability of OD due to adaptive differentiation between recently isolated population fragments as a function of intensity of selection, genetic diversity, effective population sizes, and generations of isolation. Empirical data indicated that populations in similar environments had not developed OD even after thousands of generations of isolation. To predict the probability of OD, we developed a decision tree that was based on the four variables from the breeders' equation, taxonomic status, and gene flow within the last 500 years. The predicted probability of OD in crosses between two populations is elevated when the populations have at least one of the following characteristics: are distinct species, have fixed chromosomal differences, exchanged no genes in the last 500 years, or inhabit different environments. Conversely, the predicted probability of OD in crosses between two populations of the same species is low for populations with the same karyotype, isolated for <500 years, and that occupy similar environments. In the former case, we recommend crossing be avoided or tried on a limited, experimental basis. In the latter case, crossing can be carried out with low probability of OD. We used crosses with known results to test the decision tree and found that it correctly identified cases where OD occurred. Current concerns about OD in recently fragmented populations are almost certainly excessive.


Assuntos
Cruzamento , Conservação dos Recursos Naturais , Fluxo Gênico , Adaptação Biológica , Cruzamentos Genéticos , Árvores de Decisões , Deriva Genética , Densidade Demográfica , Isolamento Social
7.
Ecol Appl ; 20(8): 2334-45, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21265462

RESUMO

For species of conservation concern, ecologists often need to estimate potential population growth rates with minimal life history data. We use a survivorship database for captive mammals to show that, although survivorship scale (i.e., longevity) varies widely across mammals, survivorship shape (i.e., the age-specific pattern of mortality once survivorship has been scaled to maximum longevity) varies little. Consequently, reasonable estimates of population growth rate can be achieved for diverse taxa using a model of survivorship shape along with an estimate of longevity. In addition, we find that the parameters of survivorship shape are related to taxonomic group, a fact that may be used to further improve estimates of survivorship when full life history data are unavailable. Finally, we compare survivorship shape in captive and wild populations of the same species and find higher adult survivorship in captive populations but no corresponding increase in juvenile survivorship. These differences likely reflect a convolution of true differences in captive vs. wild survivorship and the difficulty of observing juvenile mortality in field studies.


Assuntos
Animais de Zoológico , Artiodáctilos/fisiologia , Carnívoros/fisiologia , Conservação dos Recursos Naturais , Primatas/fisiologia , Animais , Longevidade , Crescimento Demográfico
8.
Am J Primatol ; 29(4): 269-285, 1993.
Artigo em Inglês | MEDLINE | ID: mdl-31941182

RESUMO

Mortality statistics from five populations of small New World monkeys (includinsg Callithrix jaccus, Leontopithecus rosalia, Saguinus fuscicollis, and Saguinus oedipus) were combined to generate a standard model life table reflecting the mortality patterns of these primates. The model is applied to three individual populations to illustrate a strategy for smoothing and interpolating mortality statistics of varying completeness and quality. © 1993 Wiley-Liss, Inc.

9.
Evolution ; 52(3): 900-909, 1998 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28565244

RESUMO

It has been hypothesized that natural selection reduces the "genetic load" of deleterious alleles from populations that inbreed during bottlenecks, thereby ameliorating impacts of future inbreeding. We tested the efficiency with which natural selection purges deleterious alleles from three subspecies of Peromyscus polionotus during 10 generations of laboratory inbreeding by monitoring pairing success, litter size, viability, and growth in 3604 litters produced from 3058 pairs. In P. p. subgriseus, there was no reduction across generations in inbreeding depression in any of the fitness components. Strongly deleterious recessive alleles may have been removed previously during episodes of local inbreeding in the wild, and the residual genetic load in this population was not further reduced by selection in the lab. In P. p. rhoadsi, four of seven fitness components did show a reduction of the genetic load with continued inbreeding. The average reduction in the genetic load was as expected if inbreeding depression in this population is caused by highly deleterious recessive alleles that are efficiently removed by selection. For P. p. leucocephalus a population that experiences periodic bottlenecks in the wild, the effect of further inbreeding in the laboratory was to exacerbate rather than reduce the genetic load. Recessive deleterious alleles may have been removed from this population during repeated bottlenecks in the wild; the population may be close to a threshold level of heterozygosity below which fitness declines rapidly. Thus, the effects of selection on inbreeding depression varied substantially among populations, perhaps due to different histories of inbreeding and selection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA