Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Food Sci Technol ; 61(4): 651-674, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38410265

RESUMO

To investigate suitable processing methods for improve the flavor while maintaining quality, hellgrammites were subjected to fifteen different processing methods. The samples were tested by sensory evaluation and were analyzed using HS-SPME-GC-MS. The sensory evaluation revealed that five methods for head and chest removal, three wine-fried methods, and three vinegar-roasting methods significantly reduced the levels of hexanal (3129.05 ± 45.77 µg/kg) and heptanal (436.72 ± 7.42 µg/kg), compounds responsible for fishy and earthy flavors, compared to raw samples. The latter two methods exhibited increased aroma flavor. PCA and OPLS-DA analyses suggested that acids, alcohols, and esters played a crucial role in flavor modification. Notably, vinegar-roasting methods demonstrated the highest acid content and had a substantial impact on volatile compounds. Additionally, boiling methods effectively reduced the levels of hazardous compounds, such as toluene and 1,3-Dimethyl-benzene. However, other methods did not exhibit similar efficacy in reducing hazardous compounds. The accumulation of hazardous compounds showed a decreasing trend in the whole insect, head removal, and head and chest removal groups. Moreover, the relative odor activity value consistently identified aldehyde compounds, including hexanal and heptanal, as the main contributors to aroma. Overall, boiling and head and chest removal procedures were suggested as precautionary measures during the initial processing of hellgrammites-based food products. The vinegar-roasting and wine-fried methods could be employed to impart desired flavors, aligning with consumers' preferences. These findings lay the foundation for standardizing processing techniques and ensuring the quality control of products derived from hellgrammites.

2.
Cytotechnology ; 76(2): 179-190, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38495290

RESUMO

In order to investigate miR-4763-3p and associated genes' roles in myocarditis, AC16 cell line was divided into LPS + miR-4763-3p inhibitor, LPS + NC inhibitor, LPS + miR-4763-3p inhibitor + si-IL10RA and NC groups, and Q-PCR was used to find out whether miR-4763-3p was expressed; Targetscan, Genecards, and MiRDB were used to estimate the miR-4763-3p target; Targetscan was used to display binding sites. Western blot assay was undertaken to detect Bax, Bcl-2, and IL10RA expression. Proliferation and apoptosis were processed using CCK8 and the flow cytometry assay, respectively. Migration and invasion were confirmed utilizing Transwell test. ELISA assay was processed to show the content of IL-6, IL-1ß, IL-10 and TGF-ß in the cell culture supernatant. After being exposed to LPS, cardiomyocyte cells expressed more miR-4763-3p. MiR-4763-3p inhibitor accelerated proliferation, migration and invasion behavior, while it also decreased apoptosis rate in LPS-treated cardiomyocyte cells. MiR-4763-3p inhibitor attenuated the inflammatory response by up-regulating Bax expression and down-regulating Bcl-2 level in LPS-treated cardiomyocyte cells. In cardiomyocyte cells treated with LPS, MiR-4763-3p expression was elevated. si-IL10RA The miR-4763-3p inhibitor restored its effects. MiR-4763-3p accelerates lipopolysaccharide-induced cardiomyocyte apoptosis and inflammatory response by targeting IL10RA, which might be a potential target for myocarditis.

3.
Microorganisms ; 12(6)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38930556

RESUMO

Cellulosic ethanol is the key technology to alleviate the pressure of energy supply and climate change. However, the ethanol production process, which is close to industrial production and has a high saccharification rate and ethanol yield, still needs to be developed. This study demonstrates the effective conversion of poplar wood waste into fuel-grade ethanol. By employing a two-step pretreatment using sodium chlorite (SC)-dilute sulfuric acid (DSA), the raw material achieved a sugar conversion rate exceeding 85% of the theoretical value. Under optimized conditions, brewing yeast co-utilizing C6/C5 enabled a yield of 35 g/L ethanol from 10% solid loading delignified poplar hydrolysate. We increased the solid loading to enhance the final ethanol concentration and optimized both the hydrolysis and fermentation stages. With 20% solid loading delignified poplar hydrolysate, the final ethanol concentration reached 60 g/L, a 71.4% increase from the 10% solid loading. Our work incorporates the pretreatment, enzymatic hydrolysis, and fermentation stages to establish a simple, crude poplar waste fuel ethanol process, expanding the range of feedstocks for second-generation fuel ethanol production.

4.
Microbiol Res ; 286: 127815, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38944943

RESUMO

Saccharomyces cerevisiae is commonly used as a microbial cell factory to produce high-value compounds or bulk chemicals due to its genetic operability and suitable intracellular physiological environment. The current biosynthesis pathway for targeted products is primarily rewired in the cytosolic compartment. However, the related precursors, enzymes, and cofactors are frequently distributed in various subcellular compartments, which may limit targeted compounds biosynthesis. To overcome above mentioned limitations, the biosynthesis pathways are localized in different subcellular organelles for product biosynthesis. Subcellular compartmentalization in the production of targeted compounds offers several advantages, mainly relieving competition for precursors from side pathways, improving biosynthesis efficiency in confined spaces, and alleviating the cytotoxicity of certain hydrophobic products. In recent years, subcellular compartmentalization in targeted compound biosynthesis has received extensive attention and has met satisfactory expectations. In this review, we summarize the recent advances in the compartmentalized biosynthesis of the valuable compounds in S. cerevisiae, including terpenoids, sterols, alkaloids, organic acids, and fatty alcohols, etc. Additionally, we describe the characteristics and suitability of different organelles for specific compounds, based on the optimization of pathway reconstruction, cofactor supplementation, and the synthesis of key precursors (metabolites). Finally, we discuss the current challenges and strategies in the field of compartmentalized biosynthesis through subcellular engineering, which will facilitate the production of the complex valuable compounds and offer potential solutions to improve product specificity and productivity in industrial processes.


Assuntos
Vias Biossintéticas , Engenharia Metabólica , Saccharomyces cerevisiae , Terpenos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Engenharia Metabólica/métodos , Terpenos/metabolismo , Vias Biossintéticas/genética , Esteróis/metabolismo , Esteróis/biossíntese , Alcaloides/biossíntese , Alcaloides/metabolismo , Álcoois Graxos/metabolismo , Organelas/metabolismo , Redes e Vias Metabólicas/genética
5.
Front Pharmacol ; 15: 1309682, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476329

RESUMO

Introduction: Significant attention has been paid to myocardial damage mediated by the single-stranded RNA virus. Qingfei Paidu decoction (QFPDD) has been proved to protect the damage caused by the influenza virus A/PR/8/1934 (PR8), but its specific mechanism is unclear. Methods: Molecular biological methods, together with network pharmacology, were used to analyze the effects and underlying mechanism of QFPDD treatment on PR8-induced myocardial damage to obtain insights into the treatment of COVID-19-mediated myocardial damage. Results: Increased apoptosis and subcellular damage were observed in myocardial cells of mice infected by PR8. QFPDD treatment significantly inhibited the apoptosis and subcellular damage induced by the PR8 virus. The inflammatory factors IFN-ß, TNF-α, and IL-18 were statistically increased in the myocardia of the mice infected by PR8, and the increase in inflammatory factors was prevented by QFPDD treatment. Furthermore, the expression levels or phosphorylation of necroptosis-related proteins RIPK1, RIPK3, and MLKL were abnormally elevated in the group of infected mice, while QFPDD restored the levels or phosphorylation of these proteins. Our study demonstrated that HIF-1α is a key target of QFPDD in the treatment of influenza virus-mediated injury. The HIF-α level was significantly increased by PR8 infection. Both the knockdown of HIF-1α and treatment of the myocardial cell with QFPDD significantly reversed the increased inflammatory factors during infection. Overexpression of HIF-1α reversed the inhibition effects of QFPDD on cytokine expression. Meanwhile, seven compounds from QFPDD may target HIF-1α. Conclusion: QFPDD can ameliorate influenza virus-mediated myocardial damage by reducing the degree of cell necroptosis and apoptosis, inhibiting inflammatory response and the expression of HIF-1α. Thus, our results provide new insights into the treatment of respiratory virus-mediated myocardial damage.

6.
Phytochemistry ; 227: 114228, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39074762

RESUMO

Tilianin and linarin, two rare glycosylated flavonoids in the aromatic endangered medicinal plant Nardostachys jatamansi (D.on)DC., play an important role in the fields of medicine, cosmetics, food and dye industries. However, there remains a lack of comprehensive understanding regarding their biosynthetic pathway. In this study, the phytochemical investigation of N. jatamansi resulted in the isolation of linarin. With help of AlphaFold2 to cluster the entire glycosyltransferase family based on predicted structure similarities, we successfully identified a flavonoid glycosyltransferase NjUGT73B1, which could efficiently catalyze the glucosylation of acacetin at 7-OH to produce tilianin, also the key precursor in the biosynthesis of linarin. Additionally, NjUGT73B1 displayed a high degree of substrate promiscuity, enabling glucosylation at 7-OH of many flavonoids. Molecular modeling and site-directed mutagenesis revealed that H19, H21, H370, F126, and F127 play the crucial roles in the glycosylation ability of NjUGT73B1. Notably, comparation with the wild NjUGT73B1, mutant H19K led to a 50% increase in the activity of producing tilianin from acacetin.

7.
Bioresour Bioprocess ; 10(1): 41, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647809

RESUMO

A suitable nutrient supply, especially of vitamins, is very significant for the deep display of the inherent genetic properties of microorganisms. Here, using the chemically defined minimal medium (MM) for yeast, nicotinamide and inositol were confirmed to be more beneficial for the performance of two industrial baker's yeasts, a conventional and a high-sugar-tolerant strain. Increasing nicotinamide or inositol to proper levels could enhance the both strains on cell growth and activity and product performance, including trehalose accumulation and leavening performance. The activity of key enzymes (PCK, TPS) and the content of intermediate metabolites (G6P, UDPG) in the trehalose synthesis pathway were promoted by a moderate supply of nicotinamide and inositol. That were also proved that an appropriate amount of niacinamide promoted the transcription of longevity-related genes (PNC1, SIR2), and the proper concentration of inositol altered the phospholipid composition in cells, namely, phosphatidylinositol and phosphatidyl choline. Furthermore, the cell growth and the leavening performance of the both strains were promoted after adjusting inositol to choline to the proper ratio, resulting directly in content changes of phosphatidylinositol and phosphatidyl choline in the cells. While the two strains responded to the different proper ratio of inositol to choline probably due to their specific physiological characteristics. Such beneficial effects of increased nicotinamide levels were confirmed in natural media, molasses and corn starch hydrolyzed sugar media. Meanwhile, such adjustment of inositol to choline ratio could lessen the inhibition of excess inositol on cell growth of the two tested strains in corn starch hydrolyzed sugar media. However, in molasse, such phenomenon was not observed probably since there was higher Ca2+ in it. The results indicated that the effects of nutrient factors, such as vitamins, on cell growth and other properties found out from the simple chemically defined minimal medium were an effective measure to use in improving the recipe of natural media at least for baker's yeast.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA