Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
Nat Mater ; 23(3): 331-338, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37537355

RESUMO

The properties of two-dimensional (2D) van der Waals materials can be tuned through nanostructuring or controlled layer stacking, where interlayer hybridization induces exotic electronic states and transport phenomena. Here we describe a viable approach and underlying mechanism for the assisted self-assembly of twisted layer graphene. The process, which can be implemented in standard chemical vapour deposition growth, is best described by analogy to origami and kirigami with paper. It involves the controlled induction of wrinkle formation in single-layer graphene with subsequent wrinkle folding, tearing and re-growth. Inherent to the process is the formation of intertwined graphene spirals and conversion of the chiral angle of 1D wrinkles into a 2D twist angle of a 3D superlattice. The approach can be extended to other foldable 2D materials and facilitates the production of miniaturized electronic components, including capacitors, resistors, inductors and superconductors.

2.
Proc Natl Acad Sci U S A ; 119(22): e2120716119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35605120

RESUMO

SignificanceFor oxide catalysts, it is important to elucidate and further control their atomic structures. In this work, well-defined CrO2 bilayer islands and Cr2O7 dinuclear clusters have been grown on Au(111) and unambiguously identified by scanning tunneling microscopy and theoretical calculations. Upon cycled redox treatments, the two kinds of oxide nanostructures can be reversibly transformed. It is interesting to note that both Cr oxides do not exist in bulk but need to be stabilized by the metal surface and the specific environment. Our results suggest that both redox atmosphere and interface confinement effects can be used to construct an oxide nanostructure with the specific chemical state and structure.

3.
J Am Chem Soc ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528765

RESUMO

Despite the extensive industrial and research interests in zeolites, their intrinsic catalytic nature is not fully understood due to the complexity of the hydroxyl-aluminum moieties. 17O NMR would provide irreplaceable opportunities for much-needed fine structural determination given the ubiquitous presence of oxygen atoms in nearly all species; however, the low sensitivity and quadrupolar nature of oxygen-17 make its NMR spectroscopic elucidation challenging. Here, we show that state-of-the-art double resonance solid-state NMR techniques have been combined with spectral editing methods based on scalar (through-bond) and dipolar (through-space) couplings, which allowed us to address the subtle protonic structures in zeolites. Notably, the often-neglected and undesired second-order quadrupolar-dipolar cross-term interaction ("2nd-QD interaction") can actually be exploited and can help gain invaluable information. Eventually, a comprehensive set of 1H-17O/1H-27Al double resonance NMR with J-/D-coupling spectral editing techniques have been designed in this work and enabled us to reveal atomic-scale precise structural and dynamical details in zeolites including: 1) The jump rate of the bridging acid site (BAS) proton is relatively low, i.e., far less than 100 s-1 at room temperature. 2) The Al-OH groups with 1H chemical shift at 2.6-2.8 ppm, at least for nonseverely dealuminated H-ZSM-5 catalysts, exhibit a rigid bridging environment similar to that of BAS. 3) The Si-OH groups at 2.0 ppm are not hydrogen bonded and undergo fast cone-rotational motion. The results in this study predict the 2nd-QD interaction to be universal for any rigid -17O-H environment, such as those in metal oxide surfaces or biomaterials.

4.
J Am Chem Soc ; 146(3): 1887-1893, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38205793

RESUMO

Despite wide studies demonstrating the versatility of the metal oxide-zeolite (OXZEO) catalyst concept to tackle the selectivity challenge in syngas chemistry, the active sites of metal oxides and the mechanism of CO/H2 activation remain to be elucidated. Herein, we demonstrate experimentally the role of Cr in zinc-chromium oxides and unveil visually, for the first time, the active sites for CO activation employing scanning transmission electron microscopy-electron energy loss spectroscopy using the volumetric density of surface carbon species as a descriptor. The ZnCr2O4 spinel surface with atomic ZnOx overlayer is the most active site for C-O bond dissociation, particularly at the narrow ZnCr2O4(110) facets constrained between the (311) and (111) facets, followed by the Cr-doped wurtzite ZnO surface. In comparison, the surfaces of ZnCr2O4 with aggregated ZnOx overlayers, pure ZnO, and the stoichiometric ZnCr2O4 exhibit a significantly lower activity. In situ synchrotron-based vacuum ultraviolet photoionization mass spectrometric study on different temperature programmed surface reactions with isotopes of C18O, 13CO, and D2 validates direct CO dissociation over ZnCrn oxides in CO, forming CH2 and further to hydrocarbons if H2 is present and CH2CO intermediates in syngas. The activity of CO dissociation and hydrogenation over ZnCrn oxides correlates well with the syngas-to-light-olefins activity of ZnCrn-SAPO-18 composite catalysts as a function of the Cr/Zn ratio.

5.
J Am Chem Soc ; 146(8): 5523-5531, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38367215

RESUMO

An enclosed nanospace often shows a significant confinement effect on chemistry within its inner cavity, while whether an open space can have this effect remains elusive. Here, we show that the open surface of TiO2 creates a confined environment for In2O3 which drives spontaneous transformation of free In2O3 nanoparticles in physical contact with TiO2 nanoparticles into In oxide (InOx) nanolayers covering onto the TiO2 surface during CO2 hydrogenation to CO. The formed InOx nanolayers are easy to create surface oxygen vacancies but are against over-reduction to metallic In in the H2-rich atmospheres, which thus show significantly enhanced activity and stability in comparison with the pure In2O3 catalyst. The formation of interfacial In-O-Ti bonding is identified to drive the In2O3 dispersion and stabilize the metastable InOx layers. The InOx overlayers with distinct chemistry from their free counterpart can be confined on various oxide surfaces, demonstrating the important confinement effect at oxide/oxide interfaces.

6.
Angew Chem Int Ed Engl ; 63(20): e202402950, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38512110

RESUMO

The electrochemical synthesis of ethylene oxide (EO) using ethylene and water under ambient conditions presents a low-carbon alternative to existing industrial production process. Yet, the electrocatalytic ethylene epoxidation route is currently hindered by largely insufficient activity, EO selectivity, and long-term stability. Here we report a single atom Ru-doped hollandite structure KIr4O8 (KIrRuO) nanowire catalyst for efficient EO production via a chloride-mediated ethylene epoxidation process. The KIrRuO catalyst exhibits an EO partial current density up to 0.7 A cm-2 and an EO yield as high as 92.0 %. The impressive electrocatalytic performance towards ethylene epoxidation is ascribed to the modulation of electronic structures of adjacent Ir sites by single Ru atoms, which stabilizes the *CH2CH2OH intermediate and facilitates the formation of active Cl2 species during the generation of 2-chloroethanol, the precursor of EO. This work provides a single atom modulation strategy for improving the reactivity of adjacent metal sites in heterogeneous electrocatalysts.

7.
Angew Chem Int Ed Engl ; 63(30): e202404861, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38738502

RESUMO

Solid oxide electrolysis cells are prospective approaches for CO2 utilization but face significant challenges due to the sluggish reaction kinetics and poor stability of the fuel electrodes. Herein, we strategically addressed the long-standing trade-off phenomenon between enhanced exsolution and improved structural stability via topotactic ion exchange. The surface dynamic reconstruction of the MnOx/La0.7Sr0.3Cr0.9Ir0.1O3-δ (LSCIr) catalyst was visualized at the atomic scale. Compared with the Ir@LSCIr interface, the in situ self-assembled Ir@MnOx/LSCIr interface exhibited greater CO2 activation and easily removable carbonate intermediates, thus reached a 42 % improvement in CO2 electrolysis performance at 1.6 V. Furthermore, an improved CO2 electrolysis stability was achieved due to the uniformly wrapped MnOx shell of the Ir@MnOx/LSCIr cathode. Our approach enables a detailed understanding of the dynamic microstructure evolution at active interfaces and provides a roadmap for the rational design and evaluation of efficient metal/oxide catalysts for CO2 electrolysis.

8.
Angew Chem Int Ed Engl ; 63(5): e202313361, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38088045

RESUMO

Cathodic CO2 adsorption and activation is essential for high-temperature CO2 electrolysis in solid oxide electrolysis cells (SOECs). However, the component of oxygen ionic conductor in the cathode displays limited electrocatalytic activity. Herein, stable single Ruthenium (Ru) atoms are anchored on the surface of oxygen ionic conductor (Ce0.8 Sm0.2 O2-δ , SDC) via the strong covalent metal-support interaction, which evidently modifies the electronic structure of SDC surface for favorable oxygen vacancy formation and enhanced CO2 adsorption and activation, finally evoking the electrocatalytic activity of SDC for high-temperature CO2 electrolysis. Experimentally, SOEC with the Ru1 /SDC-La0.6 Sr0.4 Co0.2 Fe0.8 O3-δ cathode exhibits a current density as high as 2.39 A cm-2 at 1.6 V and 800 °C. This work expands the application of single atom catalyst to the high-temperature electrocatalytic reaction in SOEC and provides an efficient strategy to tailor the electronic structure and electrocatalytic activity of SOEC cathode at the atomic scale.

9.
J Am Chem Soc ; 145(31): 17056-17065, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37493082

RESUMO

Supported oxides are widely used in many important catalytic reactions, in which the interaction between the oxide catalyst and oxide support is critical but still remains elusive. Here, we construct a chemically bonded oxide-oxide interface by chemical deposition of Co3O4 onto ZnO powder (Co3O4/ZnO), in which complete reduction of Co3O4 to Co0 has been strongly impeded. It was revealed that the local interfacial confinement effect between Co oxide and the ZnO support helps to maintain a metastable CoOx state in CO2 hydrogenation reaction, producing 93% CO. In contrast, a physically contacted oxide-oxide interface was formed by mechanically mixing Co3O4 and ZnO powders (Co3O4-ZnO), in which reduction of Co3O4 to Co0 was significantly promoted, demonstrating a quick increase of CO2 conversion to 45% and a high selectivity toward CH4 (92%) in the CO2 hydrogenation reaction. This interface effect is ascribed to unusual remote spillover of dissociated hydrogen species from ZnO nanoparticles to the neighboring Co oxide nanoparticles. This work clearly illustrates the equally important but opposite local and remote effects at the oxide-oxide interfaces. The distinct oxide-oxide interactions contribute to many diverse interface phenomena in oxide-oxide catalytic systems.

10.
Small ; 19(49): e2303710, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37612819

RESUMO

The increasing demand for micro-thermoelectric coolers and generators promotes the research on thermoelectric (TE) thin films. As a promising medium-temperature TE material, GeTe has attracted wide attention recently. However, the thermoelectric performance of thin-film GeTe remains inferior. Herein, oriented GeTe films with excessive Ge are obtained by magnetron co-sputtering technique, which can not only reduce the carrier concentration but also increase the carrier mobility, maintaining the high electrical conductivity of GeTe. Furthermore, higher structural symmetry and grain boundary scattering enhance the Seebeck coefficient of oriented GeTe films. As a result, the power factor (PF) value can reach as high as 2848 µW m-1 K-2 at room temperature and increase to 5263 µW m-1 K-2 at 600 K. Furthermore, a TE device with the Ge-rich GeTe thin film is fabricated and the maximum output power density (power per unit area) reaches 0.3 W cm-2 at ΔT = 250 K. This work demonstrates that the stoichiometry and orientation modulations are effective strategies to improve the thermoelectric performance of GeTe thin films.

11.
Small ; 19(25): e2300856, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36932891

RESUMO

CO2 electrolysis is a promising route for achieving net-zero emission through decarbonization. To realize CO2 electrolysis toward practical application, beyond catalyst structures, it is also critical to rationally manipulate catalyst microenvironments such as the water at the electrode/electrolyte interface. Here, the role of interfacial water in CO2 electrolysis over Ni-N-C catalyst modified with different polymers is investigated. Benefiting from a hydrophilic electrode/electrolyte interface, the Ni-N-C catalyst modified with quaternary ammonia poly(N-methyl-piperidine-co-p-terphenyl) shows a Faradaic efficiency of 95% and a partial current density of 665 mA cm-2 for CO production in an alkaline membrane electrode assembly electrolyzer. A scale-up demonstration using a 100 cm2 electrolyzer achieves a CO production rate of 514 mL min-1 at a current of 80 A. In-situ microscopy and spectroscopy measurements indicate that the hydrophilic interface significantly promotes the formation of the *COOH intermediate, rationalizing the high CO2 electrolysis performance.

12.
Chem Rev ; 121(11): 6588-6609, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34032417

RESUMO

Syngas chemistry has been under study since Fischer-Tropsch synthesis (FTS) was invented in the 1920s. Despite the successful applications of FTS as the core technology of coal-to-liquid and gas-to-liquid processes in industry, the product selectivity control of syngas conversion still remains a great challenge, particularly for value-added chemicals such as light olefins. Recent studies show that the catalyst design concept of OXZEO (oxide-zeolite-based composite) enables direct syngas conversion to mixed light olefins with a selectivity reaching 80% and to ethylene with a selectivity of 83% among hydrocarbons. They both well-surpass the limits predicated by the Anderson-Schultz-Flory model via the conventional FTS route (58% and 30%, respectively). Furthermore, this catalyst concept allows one-step synthesis of gasoline-range isoparaffins and aromatic compounds, which is otherwise not possible in conventional FTS. A rapidly growing number of studies demonstrate the versatility of this concept and may form a technology platform for utilization of carbon resources including coal, natural gas, and biomass via syngas to a variety of basic chemicals and fuels. However, the selectivity control mechanism is far from being understood. Therefore, we focus mainly on the catalytic roles of the bifunctionalities of OXZEO while reviewing the development of bifunctional catalysts for selective syngas conversion by taking syngas-to-light olefins as an example. With this, we intend to provide insights into the selectivity control mechanism of the OXZEO concept in order to understand the challenges and prospects for future development of much more active and more selective catalysts.

13.
Angew Chem Int Ed Engl ; 62(26): e202303327, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37119055

RESUMO

Electrochemical conversion of nitrate (NO3 - ) into ammonia (NH3 ) represents a potential way for achieving carbon-free NH3 production while balancing the nitrogen cycle. Herein we report a high-performance Cu nanosheets catalyst which delivers a NH3 partial current density of 665 mA cm-2 and NH3 yield rate of 1.41 mmol h-1 cm-2 in a flow cell at -0.59 V vs. reversible hydrogen electrode. The catalyst showed a high stability for 700 h with NH3 Faradaic efficiency of ≈88 % at 365 mA cm-2 . In situ spectroscopy results verify that Cu nanosheets are in situ derived from the as-prepared CuO nanosheets under electrochemical NO3 - reduction reaction conditions. Electrochemical measurements and density functional theory calculations indicate that the high performance is attributed to the tandem interaction of Cu(100) and Cu(111) facets. The NO2 - generated on the Cu(100) facets is subsequently hydrogenated on the Cu(111) facets, thus the tandem catalysis promotes the crucial hydrogenation of *NO to *NOH for NH3 production.


Assuntos
Amônia , Nitratos , Catálise , Eletrodos , Hidrogenação
14.
Angew Chem Int Ed Engl ; 62(25): e202217701, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37071488

RESUMO

The oxide-zeolite (OXZEO) catalyst design concept has been demonstrated in an increasing number of studies as an alternative avenue for direct syngas conversion to light olefins. We report that face-centered cubic (FCC) MnGaOx -Spinel gives 40 % CO conversion, 81 % light olefins selectivity, and a 0.17 g gcat -1 h-1 space-time yield of light olefins in combination with SAPO-18. In comparison, solid solution MnGaOx (characterized by Mn-doped hexagonal close-packed (HCP) Ga2 O3 ) with a similar chemical composition gives a much inferior activity, i.e., the specific surface activity is one order of magnitude lower than the spinel oxide. Photoluminescence (PL), in situ Fourier-transform infrared (FT-IR), and density functional theory (DFT) calculations indicate that the superior activity of MnGaOx -Spinel can be attributed to its higher reducibility (higher concentration of oxygen vacancies) and the presence of coordinatively unsaturated Ga3+ sites, which facilitates the dissociation of the C-O bond via a more efficient ketene-acetate pathway to light olefins.


Assuntos
Alcenos , Óxido de Alumínio , Espectroscopia de Infravermelho com Transformada de Fourier , Óxidos
15.
Angew Chem Int Ed Engl ; 62(32): e202307057, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37285520

RESUMO

Perovskites exhibit excellent high-temperature oxygen evolution reaction (OER) activities as the anodes of solid oxide electrolysis cells (SOECs). However, the relationship between ion ordering and OER performances is rarely investigated. Herein, a series of PrBaCo2-x Fex O5+δ perovskites with tailored ion orderings are constructed. Physicochemical characterizations and density functional theory calculations confirm that the oxygen bulk migration and surface transport capacities as well as the OER activities are promoted by the A-site cation ordering, but weakened by the oxygen vacancy ordering. Hence, SOEC with the A-site-ordered and oxygen-vacancy-disordered PrBaCo2 O5+δ anode exhibits the highest performance of 3.40 A cm-2 at 800 °C and 2.0 V. This work sheds light on the critical role of ion orderings in the high-temperature OER performance and paves a new way for screening novel anode materials of SOECs.

16.
J Am Chem Soc ; 144(11): 4874-4882, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35258951

RESUMO

Encapsulation of metal nanoparticles by support-derived materials known as the classical strong metal-support interaction (SMSI) often happens upon thermal treatment of supported metal catalysts at high temperatures (≥500 °C) and consequently lowers the catalytic performance due to blockage of metal active sites. Here, we show that this SMSI state can be constructed in a Ru-MoO3 catalyst using CO2 hydrogenation reaction gas and at a low temperature of 250 °C, which favors the selective CO2 hydrogenation to CO. During the reaction, Ru nanoparticles facilitate reduction of MoO3 to generate active MoO3-x overlayers with oxygen vacancies, which migrate onto Ru nanoparticles' surface and form the encapsulated structure, that is, Ru@MoO3-x. The formed SMSI state changes 100% CH4 selectivity on fresh Ru particle surfaces to above 99.0% CO selectivity with excellent activity and long-term catalytic stability. The encapsulating oxide layers can be removed via O2 treatment, switching back completely to the methanation. This work suggests that the encapsulation of metal nanocatalysts can be dynamically generated in real reactions, which helps to gain the target products with high activity.

17.
J Am Chem Soc ; 144(40): 18251-18258, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36191129

RESUMO

Although ketene has been proposed to be an active intermediate in a number of reactions including OXZEO (metal oxide-zeolite)-catalyzed syngas conversion, dimethyl ether carbonylation, methanol to hydrocarbons, and CO2 hydrogenation, its chemistry and reaction pathway over zeolites are not well understood. Herein, we study the pathway of ketene transformation to gasoline range hydrocarbons over the molecular sieve H-SAPO-11 by kinetic analysis, in situ infrared spectroscopy, and solid-state nuclear magnetic resonance spectroscopy. It is demonstrated that butene is the reaction intermediate on the paths toward gasoline products. Ketene transforms to butene on the acid sites via either acetyl species following an acetic acid ketonization pathway or acetoacetyl species with keto-enol tautomerism following an acetoacetic acid decarboxylation pathway when in the presence of water. This study reveals experimentally for the first time insights into ketene chemistry in zeolite catalysis.

18.
J Am Chem Soc ; 144(38): 17365-17375, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36103675

RESUMO

Surface metal hydrides (M-H) are ubiquitous in heterogeneous catalytic reactions, while the detailed characterizations are frequently hindered by their high reactivity/low concentration, and the complicated surface structures of the host solids, especially in terms of practical solid catalysts. Herein, combining instant quenching capture and advanced solid-state NMR methodology, we report the first direct and unambiguous NMR evidence on the highly reactive surface gallium hydrides (Ga-H) over a practical Ga2O3 catalyst during direct H2 activation. The spectroscopic effects of 69Ga and 71Ga isotopes on the 1H NMR signal are clearly differentiated and clarified, allowing a concrete discrimination of the Ga-H signal from the hydroxyl crowd. Accompanied with quantitative and two-dimensional NMR spectroscopical methods, as well as density functional theory calculations, information on the site specification, structural configuration, and formation mechanism of the Ga-H species has been revealed, along with the H2 dissociation mechanism. More importantly, the successful spectroscopic identification and isolation of the surface Ga-H allow us to clearly reveal the critical but ubiquitous intermediate role of this species in catalytic reactions, such as propane dehydrogenation and CO2 hydrogenation reactions. The analytic approach presented in this work can be extended to other M-H analysis, and the insights will benefit the design of more efficient Ga-based catalysts.

19.
Phys Chem Chem Phys ; 24(25): 15603, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35723629

RESUMO

Correction for 'The synergic effect between Mo species and acid sites in Mo/HMCM-22 catalysts for methane aromatization' by Ding Ma et al., Phys. Chem. Chem. Phys., 2005, 7, 3102-3109, https://doi.org/10.1039/B502794B.

20.
Angew Chem Int Ed Engl ; 61(40): e202209629, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35909076

RESUMO

The design of efficient copper(Cu)-based catalysts is critical for CO2 electroreduction into multiple carbon products. However, most Cu-based catalysts are favorable for ethylene production while selective production of ethanol with high Faradaic efficiency and current density still remains a great challenge. Herein, we design a carbon-coated CuOx (CuOx @C) catalyst through one-pot pyrolysis of Cu-based metal-organic framework (MOF), which exhibits high selectivity for CO2 electroreduction to ethanol with Faradaic efficiency of 46 %. Impressively, the partial current density of ethanol reaches 166 mA cm-2 , which is higher than that of most reported catalysts. Operando Raman spectra indicate that the carbon coating can efficiently stabilize Cu+ species under CO2 electroreduction conditions, which promotes the C-C coupling step. Density functional theory (DFT) calculations reveal that the carbon layer can tune the key intermediate *HOCCH goes the hydrogenation pathway toward ethanol production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA