Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Glia ; 72(7): 1319-1339, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38577970

RESUMO

Neuroinflammation and chronic activation of microglial cells are the prominent features of amyotrophic lateral sclerosis (ALS) pathology. While alterations in the mRNA profile of diseased microglia have been well documented, the actual microglia proteome remains poorly characterized. Here we performed a functional characterization together with proteome analyses of microglial cells at different stages of disease in the SOD1-G93A model of ALS. Functional analyses of microglia derived from the lumbar spinal cord of symptomatic mice revealed: (i) remarkably high mitotic index (close to 100% cells are Ki67+) (ii) significant decrease in phagocytic capacity when compared to age-matched control microglia, and (iii) diminished response to innate immune challenges in vitro and in vivo. Proteome analysis revealed a development of two distinct molecular signatures at early and advanced stages of disease. While at early stages of disease, we identified several proteins implicated in microglia immune functions such as GPNMB, HMBOX1, at advanced stages of disease microglia signature at protein level was characterized with a robust upregulation of several unconventional proteins including rootletin, major vaults proteins and STK38. Upregulation of GPNMB and rootletin has been also found in the spinal cord samples of sporadic ALS. Remarkably, the top biological functions of microglia, in particular in the advanced disease, were not related to immunity/immune response, but were highly enriched in terms linked to RNA metabolism. Together, our results suggest that, over the course of disease, chronically activated microglia develop unconventional protein signatures and gradually lose their immune identity ultimately turning into functionally inefficient immune cells.


Assuntos
Esclerose Lateral Amiotrófica , Camundongos Transgênicos , Microglia , Proteoma , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/imunologia , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/genética , Microglia/metabolismo , Microglia/imunologia , Animais , Proteoma/metabolismo , Camundongos , Medula Espinal/metabolismo , Medula Espinal/patologia , Medula Espinal/imunologia , Modelos Animais de Doenças , Fagocitose/fisiologia , Humanos , Feminino , Camundongos Endogâmicos C57BL , Masculino
2.
Glia ; 68(6): 1165-1181, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31859421

RESUMO

Distal axonopathy is a recognized pathological feature of amyotrophic lateral sclerosis (ALS). In the peripheral nerves of ALS patients, motor axon loss elicits a Wallerian-like degeneration characterized by denervated Schwann cells (SCs) together with immune cell infiltration. However, the pathogenic significance of denervated SCs accumulating following impaired axonal growth in ALS remains unclear. Here, we analyze SC phenotypes in sciatic nerves of ALS patients and paralytic SOD1G93A rats, and identify remarkably similar and specific reactive SC phenotypes based on the pattern of S100ß, GFAP, isolectin and/or p75NTR immunoreactivity. Different subsets of reactive SCs expressed colony-stimulating factor-1 (CSF1) and Interleukin-34 (IL-34) and closely interacted with numerous endoneurial CSF-1R-expressing monocyte/macrophages, suggesting a paracrine mechanism of myeloid cell expansion and activation. SCs bearing phagocytic phenotypes as well as endoneurial macrophages expressed stem cell factor (SCF), a trophic factor that attracts and activates mast cells through the c-Kit receptor. Notably, a subpopulation of Ki67+ SCs expressed c-Kit in the sciatic nerves of SOD1G93A rats, suggesting a signaling pathway that fuels SC proliferation in ALS. c-Kit+ mast cells were also abundant in the sciatic nerve from ALS donors but not in controls. Pharmacological inhibition of CSF-1R and c-Kit with masitinib in SOD1G93A rats potently reduced SC reactivity and immune cell infiltration in the sciatic nerve and ventral roots, suggesting a mechanism by which the drug ameliorates peripheral nerve pathology. These findings provide strong evidence for a previously unknown inflammatory mechanism triggered by SCs in ALS peripheral nerves that has broad application in developing novel therapies.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Inflamação/metabolismo , Interleucinas/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Células de Schwann/metabolismo , Fator de Células-Tronco/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Axônios/patologia , Modelos Animais de Doenças , Humanos , Masculino , Neurônios Motores/patologia , Neuroglia/metabolismo , Ratos Transgênicos
3.
Int J Mol Sci ; 20(16)2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31395804

RESUMO

Amyotrophic lateral sclerosis (ALS) is characterized by degeneration of upper and lower motor neurons accompanied by proliferation of reactive microglia in affected regions. However, it is unknown whether the hematopoietic marker CD34 can identify a subpopulation of proliferating microglial cells in the ALS degenerating spinal cord. Immunohistochemistry for CD34 and microglia markers was performed in lumbar spinal cords of ALS rats bearing the SOD1G93A mutation and autopsied ALS and control human subjects. Characterization of CD34-positive cells was also performed in primary cell cultures of the rat spinal cords. CD34 was expressed in a large number of cells that closely interacted with degenerating lumbar spinal cord motor neurons in symptomatic SOD1G93A rats, but not in controls. Most CD34+ cells co-expressed the myeloid marker CD11b, while only a subpopulation was stained for Iba1 or CD68. Notably, CD34+ cells actively proliferated and formed clusters adjacent to damaged motor neurons bearing misfolded SOD1. CD34+ cells were identified in the proximity of motor neurons in autopsied spinal cord from sporadic ALS subjects but not in controls. Cell culture of symptomatic SOD1G93A rat spinal cords yielded a large number of CD34+ cells exclusively in the non-adherent phase, which generated microglia after successive passaging. A yet unrecognized CD34+ cells, expressing or not the microglial marker Iba1, proliferate and accumulate adjacent to degenerating spinal motor neurons, representing an intriguing cell target for approaching ALS pathogenesis and therapeutics.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Antígenos CD34/análise , Microglia/patologia , Neurônios Motores/patologia , Esclerose Lateral Amiotrófica/genética , Animais , Proliferação de Células , Células Cultivadas , Humanos , Masculino , Microglia/citologia , Mutação Puntual , Dobramento de Proteína , Ratos , Medula Espinal/patologia , Superóxido Dismutase-1/análise , Superóxido Dismutase-1/genética
4.
Hum Mol Genet ; 24(16): 4504-15, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25968119

RESUMO

Glutaric acidemia type I (GA-I) is an inherited neurometabolic childhood disorder caused by defective activity of glutaryl CoA dehydrogenase (GCDH) which disturb lysine (Lys) and tryptophan catabolism leading to neurotoxic accumulation of glutaric acid (GA) and related metabolites. However, it remains unknown whether GA toxicity is due to direct effects on vulnerable neurons or mediated by GA-intoxicated astrocytes that fail to support neuron function and survival. As damaged astrocytes can also contribute to sustain high GA levels, we explored the ability of Gcdh-/- mouse astrocytes to produce GA and induce neuronal death when challenged with Lys. Upon Lys treatment, Gcdh-/- astrocytes synthetized and released GA and 3-hydroxyglutaric acid (3HGA). Lys and GA treatments also increased oxidative stress and proliferation in Gcdh-/- astrocytes, both prevented by antioxidants. Pretreatment with Lys also caused Gcdh-/- astrocytes to induce extensive death of striatal and cortical neurons when compared with milder effect in WT astrocytes. Antioxidants abrogated the neuronal death induced by astrocytes exposed to Lys or GA. In contrast, Lys or GA direct exposure on Gcdh-/- or WT striatal neurons cultured in the absence of astrocytes was not toxic, indicating that neuronal death is mediated by astrocytes. In summary, GCDH-defective astrocytes actively contribute to produce and accumulate GA and 3HGA when Lys catabolism is stressed. In turn, astrocytic GA production induces a neurotoxic phenotype that kills striatal and cortical neurons by an oxidative stress-dependent mechanism. Targeting astrocytes in GA-I may prompt the development of new antioxidant-based therapeutical approaches.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Astrócitos/metabolismo , Encefalopatias Metabólicas/genética , Encefalopatias Metabólicas/metabolismo , Corpo Estriado/metabolismo , Glutaril-CoA Desidrogenase/deficiência , Neurônios/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Animais , Astrócitos/patologia , Encefalopatias Metabólicas/patologia , Sobrevivência Celular/genética , Corpo Estriado/patologia , Modelos Animais de Doenças , Glutaril-CoA Desidrogenase/genética , Glutaril-CoA Desidrogenase/metabolismo , Humanos , Camundongos , Camundongos Knockout , Neurônios/patologia
5.
Cell Tissue Res ; 370(3): 391-401, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28864831

RESUMO

In the rat model of amyotrophic lateral sclerosis expressing the G93A superoxide dismutase-1 mutation, motor neuron death and rapid paralysis progression are associated with the emergence of a population of aberrant glial cells (AbAs) that proliferate in the degenerating spinal cord. Targeting of AbAs with anti-neoplasic drugs reduced paralysis progression, suggesting a pathogenic potential contribution of these cells accelerating paralysis progression. In the present study, analyze the cellular and ultrastructural features of AbAs following their isolation and establishment in culture during several passages. We found that AbAs exhibit permanent loss of contact inhibition, absence of intermediate filaments and abundance of microtubules, together with an important production of extracellular matrix components. Remarkably, AbAs also exhibited exacerbated ER stress together with a significant abundance of lipid droplets, as well as autophagic and secretory vesicles, all characteristic features of cellular stress and inflammatory activation. Taken together, the present data show AbA cells as a unique aberrant phenotype for a glial cell that might explain their pathogenic and neurotoxic effects.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Neuroglia/ultraestrutura , Medula Espinal/ultraestrutura , Superóxido Dismutase-1/genética , Superóxido Dismutase/genética , Animais , Astrócitos/metabolismo , Proliferação de Células/genética , Células Cultivadas , Inibição de Contato/genética , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/fisiologia , Masculino , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microtúbulos/metabolismo , Mitocôndrias/fisiologia , Ratos , Ratos Sprague-Dawley , Medula Espinal/citologia
6.
Neuroimmunomodulation ; 24(3): 143-153, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29131016

RESUMO

OBJECTIVE: We aimed to determine the potential of aberrant glial cells (AbAs) isolated from the spinal cord of adult SOD1G93A symptomatic rats to induce gliosis and neuronal damage following focal transplantation into the lumbar spinal cord of wild-type rats. METHODS: AbAs were obtained from the spinal cords of SOD1G93A symptomatic rats. One hundred thousand cells were injected using a glass micropipette into the lumbar spinal cords (L3-L5) of syngeneic wild-type adult rats. Equal volumes of culture medium or wild-type neonatal microglia were used as controls. Seven days after transplantation, immunohistochemistry analysis was carried out using astrocytic and microglia cell markers. Transplanted SOD1G93A AbAs were recognized by specific antibodies to human SOD1 (hSOD1) or misfolded human SOD1. RESULTS: Seven days after transplantation, AbAs were mainly detected in the medial region of the lumbar ventral horn as a well-limited cell cluster formed at the site of injection by their immunoreactivity to either misfolded SOD1 or normally folded hSOD1. Compared with controls, transplanted AbAs were surrounded by marked microgliosis and reactive astrocytes. Marked microgliosis was observed to extend bilaterally up to the cervical cord. Motor neurons close to AbA transplants were surrounded by activated glial cells and displayed ubiquitin aggregation. CONCLUSIONS: AbAs bearing mutant SOD1G93A have the potential to induce neuroinflammation along the spinal cord and incipient damage to the motor neurons. The emergence of AbAs during amyotrophic lateral sclerosis pathogenesis may therefore be a mechanism to boost neuroinflammation and spread motor neuron damage along the neuroaxis.


Assuntos
Gliose/etiologia , Mutação/genética , Neuroglia/transplante , Medula Espinal/patologia , Superóxido Dismutase/genética , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Lateralidade Funcional , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/genética , Masculino , Proteínas dos Microfilamentos/metabolismo , Neurônios Motores/patologia , Neuroglia/metabolismo , Ratos , Ratos Transgênicos , Superóxido Dismutase/metabolismo , Ubiquitina/metabolismo
7.
Neurobiol Dis ; 89: 1-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26826269

RESUMO

Over-expression of mutant copper, zinc superoxide dismutase (SOD) in mice induces ALS and has become the most widely used model of neurodegeneration. However, no pharmaceutical agent in 20 years has extended lifespan by more than a few weeks. The Copper-Chaperone-for-SOD (CCS) protein completes the maturation of SOD by inserting copper, but paradoxically human CCS causes mice co-expressing mutant SOD to die within two weeks of birth. Hypothesizing that co-expression of CCS created copper deficiency in spinal cord, we treated these pups with the PET-imaging agent CuATSM, which is known to deliver copper into the CNS within minutes. CuATSM prevented the early mortality of CCSxSOD mice, while markedly increasing Cu, Zn SOD protein in their ventral spinal cord. Remarkably, continued treatment with CuATSM extended the survival of these mice by an average of 18 months. When CuATSM treatment was stopped, these mice developed ALS-related symptoms and died within 3 months. Restoring CuATSM treatment could rescue these mice after they became symptomatic, providing a means to start and stop disease progression. All ALS patients also express human CCS, raising the hope that familial SOD ALS patients could respond to CuATSM treatment similarly to the CCSxSOD mice.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Cobre/administração & dosagem , Cobre/metabolismo , Chaperonas Moleculares/metabolismo , Medula Espinal/metabolismo , Superóxido Dismutase/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Estimativa de Kaplan-Meier , Camundongos , Camundongos Transgênicos , Chaperonas Moleculares/genética , Superóxido Dismutase/genética
8.
J Neuroinflammation ; 13(1): 177, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27400786

RESUMO

BACKGROUND: In the SOD1(G93A) mutant rat model of amyotrophic lateral sclerosis (ALS), neuronal death and rapid paralysis progression are associated with the emergence of activated aberrant glial cells that proliferate in the degenerating spinal cord. Whether pharmacological downregulation of such aberrant glial cells will decrease motor neuron death and prolong survival is unknown. We hypothesized that proliferation of aberrant glial cells is dependent on kinase receptor activation, and therefore, the tyrosine kinase inhibitor masitinib (AB1010) could potentially control neuroinflammation in the rat model of ALS. METHODS: The cellular effects of pharmacological inhibition of tyrosine kinases with masitinib were analyzed in cell cultures of microglia isolated from aged symptomatic SOD1(G93A) rats. To determine whether masitinib prevented the appearance of aberrant glial cells or modified post-paralysis survival, the drug was orally administered at 30 mg/kg/day starting after paralysis onset. RESULTS: We found that masitinib selectively inhibited the tyrosine kinase receptor colony-stimulating factor 1R (CSF-1R) at nanomolar concentrations. In microglia cultures from symptomatic SOD1(G93A) spinal cords, masitinib prevented CSF-induced proliferation, cell migration, and the expression of inflammatory mediators. Oral administration of masitinib to SOD1(G93A) rats starting after paralysis onset decreased the number of aberrant glial cells, microgliosis, and motor neuron pathology in the degenerating spinal cord, relative to vehicle-treated rats. Masitinib treatment initiated 7 days after paralysis onset prolonged post-paralysis survival by 40 %. CONCLUSIONS: These data show that masitinib is capable of controlling microgliosis and the emergence/expansion of aberrant glial cells, thus providing a strong biological rationale for its use to control neuroinflammation in ALS. Remarkably, masitinib significantly prolonged survival when delivered after paralysis onset, an unprecedented effect in preclinical models of ALS, and therefore appears well-suited for treating ALS.


Assuntos
Esclerose Lateral Amiotrófica/complicações , Encefalite/tratamento farmacológico , Encefalite/etiologia , Paralisia/tratamento farmacológico , Paralisia/etiologia , Inibidores de Proteínas Quinases/uso terapêutico , Tiazóis/uso terapêutico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/mortalidade , Animais , Benzamidas , Morte Celular , Modelos Animais de Doenças , Progressão da Doença , Humanos , Masculino , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Mutação/genética , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Piperidinas , Piridinas , Ratos , Ratos Transgênicos , Medula Espinal/patologia , Superóxido Dismutase/genética
9.
Brain Behav Immun ; 56: 156-64, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26916218

RESUMO

Neopterin is found at increased levels in biological fluids from individuals with inflammatory disorders. The biological role of this pteridine remains undefined; however, due to its capacity to increase hemeoxygenase-1 content, it has been proposed as a protective agent during cellular stress. Therefore, we investigated the effects of neopterin on motor, emotional and memory functions. To address this question, neopterin (0.4 and/or 4pmol) was injected intracerebroventricularly before or after the training sessions of step-down inhibitory avoidance and fear conditioning tasks, respectively. Memory-related behaviors were assessed in Swiss and C57BL/6 mice, as well as in Wistar rats. Moreover, the putative effects of neopterin on motor and anxiety-related parameters were addressed in the open field and elevated plus-maze tasks. The effects of neopterin on cognitive performance were also investigated after intraperitoneal lipopolysaccharide (LPS) administration (0.33mg/kg) in interleukin-10 knockout mice (IL-10(-/-)). It was consistently observed across rodent species that neopterin facilitated aversive memory acquisition by increasing the latency to step-down in the inhibitory avoidance task. This effect was related to a reduced threshold to generate the hippocampal long-term potentiation (LTP) process, and reduced IL-6 brain levels after the LPS challenge. However, neopterin administration after acquisition did not alter the consolidation of fear memories, neither motor nor anxiety-related parameters. Altogether, neopterin facilitated cognitive processes, probably by inducing an antioxidant/anti-inflammatory state, and by facilitating LTP generation. To our knowledge, this is the first evidence showing the cognitive enhancer property of neopterin.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Inibição Psicológica , Potenciação de Longa Duração/efeitos dos fármacos , Consolidação da Memória/efeitos dos fármacos , Neopterina/farmacologia , Nootrópicos/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Medo/efeitos dos fármacos , Injeções Intraventriculares , Interleucina-10 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neopterina/administração & dosagem , Nootrópicos/administração & dosagem , Ratos , Ratos Wistar
10.
Proc Natl Acad Sci U S A ; 108(44): 18126-31, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22010221

RESUMO

Motoneuron loss and reactive astrocytosis are pathological hallmarks of amyotrophic lateral sclerosis (ALS), a paralytic neurodegenerative disease that can be triggered by mutations in Cu-Zn superoxide dismutase (SOD1). Dysfunctional astrocytes contribute to ALS pathogenesis, inducing motoneuron damage and accelerating disease progression. However, it is unknown whether ALS progression is associated with the appearance of a specific astrocytic phenotype with neurotoxic potential. Here, we report the isolation of astrocytes with aberrant phenotype (referred as "AbA cells") from primary spinal cord cultures of symptomatic rats expressing the SOD1(G93A) mutation. Isolation was based on AbA cells' marked proliferative capacity and lack of replicative senescence, which allowed oligoclonal cell expansion for 1 y. AbA cells displayed astrocytic markers including glial fibrillary acidic protein, S100ß protein, glutamine synthase, and connexin 43 but lacked glutamate transporter 1 and the glial progenitor marker NG2 glycoprotein. Notably, AbA cells secreted soluble factors that induced motoneuron death with a 10-fold higher potency than neonatal SOD1(G93A) astrocytes. AbA-like aberrant astrocytes expressing S100ß and connexin 43 but lacking NG2 were identified in nearby motoneurons, and their number increased sharply after disease onset. Thus, AbA cells appear to be an as-yet unknown astrocyte population arising during ALS progression with unprecedented proliferative and neurotoxic capacity and may be potential cellular targets for slowing ALS progression.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Astrócitos/patologia , Modelos Animais de Doenças , Neurônios Motores/patologia , Esclerose Lateral Amiotrófica/enzimologia , Animais , Proliferação de Células , Humanos , Mutação , Fenótipo , Ratos , Superóxido Dismutase/genética
11.
J Neurochem ; 126(3): 382-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23646980

RESUMO

The P2X7 receptor/channel responds to extracellular ATP and is associated with neuronal death and neuroinflammation in spinal cord injury and amyotrophic lateral sclerosis. Whether activation of P2X7 directly causes motor neuron death is unknown. We found that cultured motor neurons isolated from embryonic rat spinal cord express P2X7 and underwent caspase-dependent apoptosis when exposed to exceptionally low concentrations of the P2X7 agonist 2'(3')-O-(4-Benzoylbenzoyl)-ATP. The P2X7 inhibitors BBG, oATP, and KN-62 prevented 2'(3')-O-(4-Benzoylbenzoyl)-ATP-induced motor neuron death. The endogenous P2X7 agonist ATP induced motor neuron death at low concentrations (1-100 µM). High concentrations of ATP (1 mM) paradoxically became protective due to degradation in the culture media to produce adenosine and activate adenosine receptors. P2X7-induced motor neuron death was dependent on neuronal nitric oxide synthase-mediated production of peroxynitrite, p38 activation, and autocrine FAS signaling. Taken together, our results indicate that motor neurons are highly sensitive to P2X7 activation, which triggers apoptosis by activation of the well-established peroxynitrite/FAS death pathway in motor neurons.


Assuntos
Apoptose/fisiologia , Neurônios Motores/metabolismo , Ácido Peroxinitroso/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Transdução de Sinais/fisiologia , Receptor fas/metabolismo , Animais , Células Cultivadas , Imunofluorescência , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Mol Genet Metab ; 108(1): 30-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23218171

RESUMO

Deficiency of glutaryl-CoA dehydrogenase (GCDH) activity or glutaric aciduria type I (GA I) is an inherited neurometabolic disorder biochemically characterized by predominant accumulation of glutaric acid and 3-hydroxyglutaric acid in the brain and other tissues. Affected patients usually present acute striatum necrosis during encephalopathic crises triggered by metabolic stress situations, as well as chronic leukodystrophy and delayed myelination. Considering that the mechanisms underlying the brain injury in this disease are not yet fully established, in the present study we investigated important parameters of oxidative stress in the brain (cerebral cortex, striatum and hippocampus), liver and heart of 30-day-old GCDH deficient knockout (Gcdh(-/-)) and wild type (WT) mice submitted to a normal lysine (Lys) (0.9% Lys), or high Lys diets (2.8% or 4.7% Lys) for 60 h. It was observed that the dietary supplementation of 2.8% and 4.7% Lys elicited noticeable oxidative stress, as verified by an increase of malondialdehyde concentrations (lipid oxidative damage) and 2-7-dihydrodichlorofluorescein (DCFH) oxidation (free radical production), as well as a decrease of reduced glutathione levels and alteration of various antioxidant enzyme activities (antioxidant defenses) in the cerebral cortex and the striatum, but not in the hippocampus, the liver and the heart of Gcdh(-/-) mice, as compared to WT mice receiving the same diets. Furthermore, alterations of oxidative stress parameters in the cerebral cortex and striatum were more accentuated in symptomatic, as compared to asymptomatic Gcdh(-/-) mice exposed to 4.7% Lys overload. Histopathological studies performed in the cerebral cortex and striatum of these animals exposed to high dietary Lys revealed increased expression of oxidative stress markers despite the absence of significant structural damage. The results indicate that a disruption of redox homeostasis in the cerebral cortex and striatum of young Gcdh(-/-) mice exposed to increased Lys diet may possibly represent an important pathomechanism of brain injury in GA I patients under metabolic stress.


Assuntos
Encéfalo/metabolismo , Glutaril-CoA Desidrogenase/metabolismo , Homeostase , Lisina/administração & dosagem , Animais , Suplementos Nutricionais , Glutaril-CoA Desidrogenase/genética , Camundongos , Camundongos Knockout , Oxirredução , Estresse Oxidativo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
13.
Proc Natl Acad Sci U S A ; 107(52): 22659-64, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21148774

RESUMO

Spinal astrocytes are coupled by connexin (Cx) gap junctions and express pannexin 1 (Px1) and purinergic receptors. Fibroblast growth factor 1 (FGF-1), which is released in spinal cord injury, activated spinal astrocytes in culture, induced secretion of ATP, and permeabilized them to relatively large fluorescent tracers [ethidium (Etd) and lucifer yellow (LY)] through "hemichannels" (HCs). HCs can be formed by connexins or pannexins; they can open to extracellular space or can form gap junction (GJ) channels, one HC from each cell. (Pannexins may not form gap junctions in mammalian tissues, but they do in invertebrates). HC types were differentiated pharmacologically and by Px1 knockdown with siRNA and by use of astrocytes from Cx43 knockout mice. Permeabilization was reduced by apyrase (APY), an ATPase, and by P2X(7) receptor antagonists, implicating secretion of ATP and autocrine and/or paracrine action. Increased permeability of cells exposed to FGF-1 or ATP for 2 h was mediated largely by Px1 HCs activated by P2X(7) receptors. After a 7-h treatment, the permeability was mediated by both Cx43 and Px1 HCs. FGF-1 also caused reduction in gap junctional communication. Botulinum neurotoxin A, a blocker of vesicular release, reduced permeabilization when given 30 min before FGF-1 application, but not when given 1 h after FGF-1. We infer that ATP is initially released from vesicles and then it mediates continued release by action on P2X(7) receptors and opening of HCs. These changes in HCs and gap junction channels may promote inflammation and deprive neurons of astrocyte-mediated protection in spinal cord trauma and neurodegenerative disease.


Assuntos
Trifosfato de Adenosina/metabolismo , Astrócitos/efeitos dos fármacos , Conexinas/metabolismo , Fator 1 de Crescimento de Fibroblastos/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/citologia , Astrócitos/metabolismo , Western Blotting , Toxinas Botulínicas Tipo A/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Cultivadas , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Proteínas do Tecido Nervoso/genética , Neurotoxinas/farmacologia , Interferência de RNA , Ratos , Medula Espinal/citologia , Fatores de Tempo
14.
Medicina (B Aires) ; 73(1): 75-7, 2013.
Artigo em Espanhol | MEDLINE | ID: mdl-23335711

RESUMO

It is in our interest, in this brief manuscript, to report the creation of the first program of regional integration of a network of research institutes in Biomedicine belonging to members of the MERCOSUR countries. We discuss some of the foundations that gave sustenance to its creation and its objectives in the medium and long term. In addition, we consider the potential of the results of this program in the fields of applied medical research, education and biotechnology.


Assuntos
Academias e Institutos/organização & administração , Pesquisa Biomédica/organização & administração , Tecnologia Biomédica/organização & administração , Redes Comunitárias/organização & administração , Argentina , Pesquisa Biomédica/educação , Tecnologia Biomédica/educação , Brasil , Humanos , Paraguai , Transferência de Tecnologia , Uruguai
15.
Mol Neurobiol ; 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38151612

RESUMO

Carnosine is composed of ß-alanine and L-histidine and is considered to be an important neuroprotective agent with antioxidant, metal chelating, and antisenescence properties. However, children with serum carnosinase deficiency present increased circulating carnosine and severe neurological symptoms. We here investigated the in vitro effects of carnosine on redox and mitochondrial parameters in cultured cortical astrocytes from neonatal rats. Carnosine did not alter mitochondrial content or mitochondrial membrane potential. On the other hand, carnosine increased mitochondrial superoxide anion formation, levels of thiobarbituric acid reactive substances and oxidation of 2',7'-dichlorofluorescin diacetate (DCF-DA), indicating that carnosine per se acts as a pro-oxidant agent. Nonetheless, carnosine prevented DCF-DA oxidation induced by H2O2 in cultured cortical astrocytes. Since alterations on mitochondrial membrane potential are not likely to be involved in these effects of carnosine, the involvement of N-Methyl-D-aspartate (NMDA) receptors in the pro-oxidant actions of carnosine was investigated. MK-801, an antagonist of NMDA receptors, prevented DCF-DA oxidation induced by carnosine in cultured cortical astrocytes. Astrocyte reactivity induced by carnosine was also prevented by the coincubation with MK-801. The present study shows for the very first time the pro-oxidant effects of carnosine per se in astrocytes. The data raise awareness on the importance of a better understanding of the biological actions of carnosine, a nutraceutical otherwise widely reported as devoid of side effects.

16.
Sci Adv ; 8(38): eabn6545, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36129987

RESUMO

Severe COVID-19 is associated with hyperinflammation and weak T cell responses against SARS-CoV-2. However, the links between those processes remain partially characterized. Moreover, whether and how therapeutically manipulating T cells may benefit patients are unknown. Our genetic and pharmacological evidence demonstrates that the ion channel TMEM176B inhibited inflammasome activation triggered by SARS-CoV-2 and SARS-CoV-2-related murine ß-coronavirus. Tmem176b-/- mice infected with murine ß-coronavirus developed inflammasome-dependent T cell dysfunction and critical disease, which was controlled by modulating dysfunctional T cells with PD-1 blockers. In critical COVID-19, inflammasome activation correlated with dysfunctional T cells and low monocytic TMEM176B expression, whereas PD-L1 blockade rescued T cell functionality. Here, we mechanistically link T cell dysfunction and inflammation, supporting a cancer immunotherapy to reinforce T cell immunity in critical ß-coronavirus disease.

17.
Proc Natl Acad Sci U S A ; 105(2): 740-5, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18182498

RESUMO

The Nogo-66 receptor (NgR) plays a critical role in restricting axon regeneration in the central nervous system. This inhibitory action is in part mediated by a neuronal receptor complex containing p75NTR, a multifunctional receptor also well known to trigger cell death upon binding to neurotrophins such as NGF. In the present study, we show that Pep4 and NEP1-40, which are two peptides derived from the Nogo-66 sequence that modulate NgR-mediated neurite outgrowth inhibition, prevent NGF-stimulated p75NTR-dependent death of cultured embryonic motor neurons. They also confer protection on spinal cord motor neurons after neonatal sciatic nerve axotomy. These findings demonstrate an as-yet-unknown function of NgR in maintaining neuronal survival that may be relevant for motor neuron development and degeneration.


Assuntos
Morte Celular , Regulação da Expressão Gênica , Proteínas da Mielina/fisiologia , Degeneração Neural/metabolismo , Receptores de Superfície Celular/fisiologia , Receptores de Fator de Crescimento Neural/metabolismo , Nervo Isquiático/metabolismo , Animais , Astrócitos/metabolismo , Proteínas Ligadas por GPI , Camundongos , Neurônios Motores/metabolismo , Proteínas da Mielina/metabolismo , Fator de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso , Neurônios/metabolismo , Receptor Nogo 1 , Ratos , Receptores de Superfície Celular/metabolismo , Receptores de Fatores de Crescimento
18.
Acta Neuropathol Commun ; 9(1): 136, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389060

RESUMO

Degeneration of motor neurons, glial cell reactivity, and vascular alterations in the CNS are important neuropathological features of amyotrophic lateral sclerosis (ALS). Immune cells trafficking from the blood also infiltrate the affected CNS parenchyma and contribute to neuroinflammation. Mast cells (MCs) are hematopoietic-derived immune cells whose precursors differentiate upon migration into tissues. Upon activation, MCs undergo degranulation with the ability to increase vascular permeability, orchestrate neuroinflammation and modulate the neuroimmune response. However, the prevalence, pathological significance, and pharmacology of MCs in the CNS of ALS patients remain largely unknown. In autopsy ALS spinal cords, we identified for the first time that MCs express c-Kit together with chymase, tryptase, and Cox-2 and display granular or degranulating morphology, as compared with scarce MCs in control cords. In ALS, MCs were mainly found in the niche between spinal motor neuron somas and nearby microvascular elements, and they displayed remarkable pathological abnormalities. Similarly, MCs accumulated in the motor neuron-vascular niche of ALS murine models, in the vicinity of astrocytes and motor neurons expressing the c-Kit ligand stem cell factor (SCF), suggesting an SCF/c-Kit-dependent mechanism of MC differentiation from precursors. Mechanistically, we provide evidence that fully differentiated MCs in cell cultures can be generated from the murine ALS spinal cord tissue, further supporting the presence of c-Kit+ MC precursors. Moreover, intravenous administration of bone marrow-derived c-Kit+ MC precursors infiltrated the spinal cord in ALS mice but not in controls, consistent with aberrant trafficking through a defective microvasculature. Pharmacological inhibition of c-Kit with masitinib in ALS mice reduced the MC number and the influx of MC precursors from the periphery. Our results suggest a previously unknown pathogenic mechanism triggered by MCs in the ALS motor neuron-vascular niche that might be targeted pharmacologically.


Assuntos
Esclerose Lateral Amiotrófica/imunologia , Mastócitos/imunologia , Microvasos/patologia , Neurônios Motores/patologia , Doenças Neuroinflamatórias/imunologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Medula Espinal/imunologia , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Benzamidas/farmacologia , Estudos de Casos e Controles , Quimases/metabolismo , Ciclo-Oxigenase 2/metabolismo , Feminino , Humanos , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Camundongos , Microvasos/metabolismo , Pessoa de Meia-Idade , Neurônios Motores/metabolismo , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Piridinas/farmacologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia , Fator de Células-Tronco/metabolismo , Tiazóis/farmacologia , Triptases/metabolismo
19.
Neurotherapeutics ; 18(1): 309-325, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33118131

RESUMO

Motor neuron degeneration and neuroinflammation are the most striking pathological features of amyotrophic lateral sclerosis (ALS). ALS currently has no cure and approved drugs have only a modest clinically therapeutic effect in patients. Drugs targeting different deleterious inflammatory pathways in ALS appear as promising therapeutic alternatives. Here, we have assessed the potential therapeutic effect of an electrophilic nitroalkene benzoic acid derivative, (E)-4-(2-nitrovinyl) benzoic acid (BANA), to slow down paralysis progression when administered after overt disease onset in SOD1G93A rats. BANA exerted a significant inhibition of NF-κB activation in NF-κB reporter transgenic mice and microglial cell cultures. Systemic daily oral administration of BANA to SOD1G93A rats after paralysis onset significantly decreased microgliosis and astrocytosis, and significantly reduced the number of NF-κB-p65-positive microglial nuclei surrounding spinal motor neurons. Numerous microglia bearing nuclear NF-κB-p65 were observed in the surrounding of motor neurons in autopsy spinal cords from ALS patients but not in controls, suggesting ALS-associated microglia could be targeted by BANA. In addition, BANA-treated SOD1G93A rats after paralysis onset showed significantly ameliorated spinal motor neuron pathology as well as conserved neuromuscular junction innervation in the skeletal muscle, as compared to controls. Notably, BANA prolonged post-paralysis survival by ~30%, compared to vehicle-treated littermates. These data provide a rationale to therapeutically slow paralysis progression in ALS using small electrophilic compounds such as BANA, through a mechanism involving microglial NF-κB inhibition.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Nitrobenzoatos/uso terapêutico , Esclerose Lateral Amiotrófica/mortalidade , Esclerose Lateral Amiotrófica/patologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Células HT29/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Ratos , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia
20.
Nat Neurosci ; 24(3): 312-325, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33589835

RESUMO

Reactive astrocytes are astrocytes undergoing morphological, molecular, and functional remodeling in response to injury, disease, or infection of the CNS. Although this remodeling was first described over a century ago, uncertainties and controversies remain regarding the contribution of reactive astrocytes to CNS diseases, repair, and aging. It is also unclear whether fixed categories of reactive astrocytes exist and, if so, how to identify them. We point out the shortcomings of binary divisions of reactive astrocytes into good-vs-bad, neurotoxic-vs-neuroprotective or A1-vs-A2. We advocate, instead, that research on reactive astrocytes include assessment of multiple molecular and functional parameters-preferably in vivo-plus multivariate statistics and determination of impact on pathological hallmarks in relevant models. These guidelines may spur the discovery of astrocyte-based biomarkers as well as astrocyte-targeting therapies that abrogate detrimental actions of reactive astrocytes, potentiate their neuro- and glioprotective actions, and restore or augment their homeostatic, modulatory, and defensive functions.


Assuntos
Envelhecimento/patologia , Astrócitos/patologia , Encéfalo/patologia , Medula Espinal/patologia , Animais , Encefalopatias/patologia , Lesões Encefálicas/patologia , Humanos , Traumatismos da Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA