Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 488(7413): 656-9, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22763442

RESUMO

Mutations in the IDH1 and IDH2 genes encoding isocitrate dehydrogenases are frequently found in human glioblastomas and cytogenetically normal acute myeloid leukaemias (AML). These alterations are gain-of-function mutations in that they drive the synthesis of the 'oncometabolite' R-2-hydroxyglutarate (2HG). It remains unclear how IDH1 and IDH2 mutations modify myeloid cell development and promote leukaemogenesis. Here we report the characterization of conditional knock-in (KI) mice in which the most common IDH1 mutation, IDH1(R132H), is inserted into the endogenous murine Idh1 locus and is expressed in all haematopoietic cells (Vav-KI mice) or specifically in cells of the myeloid lineage (LysM-KI mice). These mutants show increased numbers of early haematopoietic progenitors and develop splenomegaly and anaemia with extramedullary haematopoiesis, suggesting a dysfunctional bone marrow niche. Furthermore, LysM-KI cells have hypermethylated histones and changes to DNA methylation similar to those observed in human IDH1- or IDH2-mutant AML. To our knowledge, our study is the first to describe the generation and characterization of conditional IDH1(R132H)-KI mice, and also the first report to demonstrate the induction of a leukaemic DNA methylation signature in a mouse model. Our report thus sheds light on the mechanistic links between IDH1 mutation and human AML.


Assuntos
Epigênese Genética/genética , Células-Tronco Hematopoéticas/citologia , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Proteínas Mutantes/metabolismo , Mutação/genética , Envelhecimento , Animais , Medula Óssea/patologia , Linhagem da Célula , Ilhas de CpG/genética , Metilação de DNA , Modelos Animais de Doenças , Feminino , Técnicas de Introdução de Genes , Glioma/patologia , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Histonas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Masculino , Camundongos , Proteínas Mutantes/genética , Células Mieloides/citologia , Células Mieloides/metabolismo , Baço/patologia
2.
Nat Rev Cancer ; 7(2): 118-29, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17251918

RESUMO

The prevalence of patients with myelodysplastic syndromes (MDS) is increasing owing to an ageing population and increased awareness of these diseases. MDS represent many different conditions, not just a single disease, that are grouped together by several clinical characteristics. A striking feature of MDS is genetic instability, and a large proportion of cases result in acute myeloid leukaemia (AML). We Review three emerging principles of MDS biology: stem-cell dysfunction and the overlap with AML, genetic instability and the deregulation of apoptosis, in the context of inherited bone marrow-failure syndromes, and treatment-related MDS and AML.


Assuntos
Síndromes Mielodisplásicas/patologia , Células-Tronco/patologia , Antineoplásicos/efeitos adversos , Apoptose , Humanos , Síndromes Mielodisplásicas/induzido quimicamente , Síndromes Mielodisplásicas/epidemiologia , Transdução de Sinais
3.
J Biol Chem ; 288(27): 19459-70, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23696637

RESUMO

Juvenile myelomonocytic leukemia (JMML) is characterized by hypersensitivity to granulocyte-macrophage colony-stimulating factor (GM-CSF). SHP2, NF-1, KRAS, and NRAS are mutated in JMML patients, leading to aberrant regulation of RAS signaling. A subset of JMML patients harbor CBL mutations associated with 11q acquired uniparental disomy. Many of these mutations are in the linker region and the RING finger of CBL, leading to a loss of E3 ligase activity. We investigated the mechanism by which CBL-Y371H, a linker region mutant, and CBL-C384R, a RING finger mutant, lead to enhanced GM-CSF signaling. Expression of CBL mutants in the TF-1 cell line resulted in enhanced survival in the absence of GM-CSF. Cells expressing CBL mutations displayed increased phosphorylation of GM-CSF receptor ßc subunit in response to stimulation, although expression of total GM-CSFR ßc was lower. This suggested enhanced kinase activity downstream of GM-CSFR. JAK2 and LYN kinase expression is elevated in CBL-Y371H and CBL-C384R mutant cells, resulting in enhanced phosphorylation of CBL and S6 in response to GM-CSF stimulation. Incubation with the JAK2 inhibitor, TG101348, abolished the increased phosphorylation of GM-CSFR ßc in cells expressing CBL mutants, whereas treatment with the SRC kinase inhibitor dasatinib resulted in equalization of GM-CSFR ßc phosphorylation signal between wild type CBL and CBL mutant samples. Dasatinib treatment inhibited the elevated phosphorylation of CBL-Y371H and CBL-C384R mutants. Our study indicates that CBL linker and RING finger mutants lead to enhanced GM-CSF signaling due to elevated kinase expression, which can be blocked using small molecule inhibitors targeting specific downstream pathways.


Assuntos
Subunidade beta Comum dos Receptores de Citocinas/metabolismo , Regulação Enzimológica da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Janus Quinase 2/metabolismo , Mutação de Sentido Incorreto , Proteínas Proto-Oncogênicas c-cbl/biossíntese , Transdução de Sinais , Quinases da Família src/biossíntese , Substituição de Aminoácidos , Linhagem Celular , Subunidade beta Comum dos Receptores de Citocinas/genética , Dasatinibe , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Humanos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/genética , Leucemia Mielomonocítica Juvenil/genética , Leucemia Mielomonocítica Juvenil/metabolismo , Leucemia Mielomonocítica Juvenil/patologia , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-cbl/genética , Pirimidinas/farmacologia , Pirrolidinas/farmacologia , Domínios RING Finger/genética , Sulfonamidas/farmacologia , Tiazóis/farmacologia , Quinases da Família src/genética
4.
Blood ; 119(20): 4581-2, 2012 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-22596169

RESUMO

Gene targeting studies revealed that Dicer1 is required for murine embryogenesis.In this issue of Blood, Alemdehy and colleagues examine deletion of Dicer1 in myeloid progenitor cells using a conditional Cebpa-Cre allele. They show that deletion of Dicer1 is required for viability and that Dicer1 regulates steps of neutrophil maturation.

5.
J Biol Chem ; 287(31): 26223-34, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22669948

RESUMO

Gene targeting experiments have shown that the cytokine erythropoietin (EPO), its cognate erythropoietin receptor (EPO-R), and associated Janus tyrosine kinase, JAK2, are all essential for erythropoiesis. Structural-functional and murine knock-in experiments have suggested that EPO-R Tyr-343 is important in EPO-mediated mitogenesis. Although Stat5 binds to EPO-R phosphotyrosine 343, the initial Stat5-deficient mice did not have profound erythroid abnormalities suggesting that additional Src homology 2 (SH2) domain-containing effectors may bind to EPO-R Tyr-343 and couple to downstream signaling pathways. We have utilized cloning of ligand target (COLT) screening to demonstrate that EPO-R Tyr(P)-343 and Tyr(P)-401 bind to the SH2 domain-containing adaptor protein SH2B1ß. Immunoprecipitation and in vitro mixing experiments reveal that EPO-R binds to SH2B1 in an SH2 domain-dependent manner and that the sequence that confers SH2B1 binding to the EPO-R is pYXXL. Previous studies have shown that SH2B1 binds directly to JAK2, but we show that in hematopoietic cells, SH2B1ß preferentially associates with the EPO-R. SH2B1 is capable of constitutive association with EPO-R, which is necessary for its optimal SH2-dependent recruitment to EPO-R-Tyr(P)-343/Tyr(P)-401. We also demonstrate that SH2B1 is responsive to EPO stimulation and becomes phosphorylated, most likely on serines/threonines, in an EPO dose- and time-dependent manner. In the absence of SH2B1, we observe enhanced activation of signaling pathways downstream of the EPO-R, indicating that SH2B1 is a negative regulator of EPO signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Receptores da Eritropoetina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/isolamento & purificação , Animais , Linhagem Celular , Eritroblastos/metabolismo , Eritropoetina/fisiologia , Humanos , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/isolamento & purificação , Fragmentos de Peptídeos/metabolismo , Fosforilação , Cultura Primária de Células , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Receptores da Eritropoetina/química , Receptores da Eritropoetina/isolamento & purificação , Transdução de Sinais
6.
Mol Ther Methods Clin Dev ; 28: 262-271, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36816757

RESUMO

The safety and efficacy of lentivirus-mediated gene therapy was recently demonstrated in five male patients with Fabry disease-a rare X-linked lysosomal storage disorder caused by GLA gene mutations that result in multiple end-organ complications. To evaluate the risks of clonal dominance and leukemogenesis, which have been reported in multiple gene therapy trials, we conducted a comprehensive DNA insertion site analysis of peripheral blood samples from the five patients in our gene therapy trial. We found that patients had a polyclonal integration site spectrum and did not find evidence of a dominant clone in any patient. Although we identified vector integrations near proto-oncogenes, these had low percentages of contributions to the overall pool of integrations and did not persist over time. Overall, we show that our trial of lentivirus-mediated gene therapy for Fabry disease did not lead to hematopoietic clonal dominance and likely did not elevate the risk of leukemogenic transformation.

7.
Blood ; 116(3): 428-36, 2010 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-20445019

RESUMO

The activation of Fli-1, an Ets transcription factor, is the critical genetic event in Friend murine leukemia virus (F-MuLV)-induced erythroleukemia. Fli-1 overexpression leads to erythropoietin-dependent erythroblast proliferation, enhanced survival, and inhibition of terminal differentiation, through activation of the Ras pathway. However, the mechanism by which Fli-1 activates this signal transduction pathway has yet to be identified. Down-regulation of the Src homology 2 (SH2) domain-containing inositol-5-phosphatase-1 (SHIP-1) is associated with erythropoietin-stimulated erythroleukemic cells and correlates with increased proliferation of transformed cells. In this study, we have shown that F-MuLV-infected SHIP-1 knockout mice display accelerated erythroleukemia progression. In addition, RNA interference (RNAi)-mediated suppression of SHIP-1 in erythroleukemia cells activates the phosphatidylinositol 3-kinase (PI 3-K) and extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathways, blocks erythroid differentiation, accelerates erythropoietin-induced proliferation, and leads to PI 3-K-dependent Fli-1 up-regulation. Chromatin immunoprecipitation and luciferase assays confirmed that Fli-1 binds directly to an Ets DNA binding site within the SHIP-1 promoter and suppresses SHIP-1 transcription. These data provide evidence to suggest that SHIP-1 is a direct Fli-1 target, SHIP-1 and Fli-1 regulate each other in a negative feedback loop, and the suppression of SHIP-1 by Fli-1 plays an important role in the transformation of erythroid progenitors by F-MuLV.


Assuntos
Leucemia Eritroblástica Aguda/etiologia , Monoéster Fosfórico Hidrolases/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Animais , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular , DNA/genética , DNA/metabolismo , Primers do DNA/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Retroalimentação Fisiológica , Vírus da Leucemia Murina de Friend/patogenicidade , Humanos , Inositol Polifosfato 5-Fosfatases , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Modelos Biológicos , Dados de Sequência Molecular , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/deficiência , Monoéster Fosfórico Hidrolases/genética , Fosforilação , Regiões Promotoras Genéticas , Proteína Proto-Oncogênica c-fli-1/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética
8.
BMC Cancer ; 11: 528, 2011 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22204395

RESUMO

BACKGROUND: Leukemia is a heterogeneous disease commonly associated with recurrent chromosomal translocations that involve tyrosine kinases including BCR-ABL, TEL-PDGFRB and TEL-JAK2. Most studies on the activated tyrosine kinases have focused on proximal signaling events, but little is known about gene transcription regulated by these fusions. METHODS: Oligonucleotide microarray was performed to compare mRNA changes attributable to BCR-ABL, TEL-PDGFRB and TEL-JAK2 after 1 week of activation of each fusion in Ba/F3 cell lines. Imatinib was used to control the activation of BCR-ABL and TEL-PDGFRB, and TEL-JAK2-mediated gene expression was examined 1 week after Ba/F3-TEL-JAK2 cells were switched to factor-independent conditions. RESULTS: Microarray analysis revealed between 800 to 2000 genes induced or suppressed by two-fold or greater by each tyrosine kinase, with a subset of these genes commonly induced or suppressed among the three fusions. Validation by Quantitative PCR confirmed that eight genes (Dok2, Mrvi1, Isg20, Id1, gp49b, Cxcl10, Scinderin, and collagen Vα1(Col5a1)) displayed an overlapping regulation among the three tested fusion proteins. Stat1 and Gbp1 were induced uniquely by TEL-PDGFRB. CONCLUSIONS: Our results suggest that BCR-ABL, TEL-PDGFRB and TEL-JAK2 regulate distinct and overlapping gene transcription profiles. Many of the genes identified are known to be involved in processes associated with leukemogenesis, including cell migration, proliferation and differentiation. This study offers the basis for further work that could lead to an understanding of the specificity of diseases caused by these three chromosomal translocations.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia/enzimologia , Leucemia/genética , Proteínas Tirosina Quinases/metabolismo , Translocação Genética , Benzamidas , Linhagem Celular Tumoral , Ativação Enzimática , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Mesilato de Imatinib , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Proteínas de Fusão Oncogênica/metabolismo , Piperazinas/farmacologia , Reação em Cadeia da Polimerase/métodos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/genética , Pirimidinas/farmacologia , RNA Mensageiro/genética
9.
Nat Commun ; 12(1): 1178, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633114

RESUMO

Enzyme and chaperone therapies are used to treat Fabry disease. Such treatments are expensive and require intrusive biweekly infusions; they are also not particularly efficacious. In this pilot, single-arm study (NCT02800070), five adult males with Type 1 (classical) phenotype Fabry disease were infused with autologous lentivirus-transduced, CD34+-selected, hematopoietic stem/progenitor cells engineered to express alpha-galactosidase A (α-gal A). Safety and toxicity are the primary endpoints. The non-myeloablative preparative regimen consisted of intravenous melphalan. No serious adverse events (AEs) are attributable to the investigational product. All patients produced α-gal A to near normal levels within one week. Vector is detected in peripheral blood and bone marrow cells, plasma and leukocytes demonstrate α-gal A activity within or above the reference range, and reductions in plasma and urine globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3) are seen. While the study and evaluations are still ongoing, the first patient is nearly three years post-infusion. Three patients have elected to discontinue enzyme therapy.


Assuntos
Doença de Fabry/enzimologia , Doença de Fabry/terapia , Terapia Genética/métodos , Lentivirus/genética , alfa-Galactosidase/genética , alfa-Galactosidase/uso terapêutico , Adulto , Antígenos CD34 , Células da Medula Óssea , Doença de Fabry/genética , Vetores Genéticos , Células-Tronco Hematopoéticas , Humanos , Leucócitos , Masculino , Pessoa de Meia-Idade , Triexosilceramidas/sangue , Triexosilceramidas/urina
10.
J Clin Invest ; 117(12): 3890-9, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18060035

RESUMO

Thrombocytosis is associated with inflammation, and certain inflammatory cytokines, including IFN-gamma, stimulate megakaryocyte and platelet production. However, the roles of IFN-gamma and its downstream effector STAT1 in megakaryocyte development are poorly understood. We previously reported that STAT1 expression was significantly downregulated in Gata1-knockdown murine megakaryocytes, which also have impaired terminal maturation. Here, we show that ectopic expression of STAT1, or its target effector IRF-1, rescued multiple defects in Gata1-deficient megakaryopoiesis in mice, inducing polyploidization and expression of a subset of platelet-expressing genes. Enforced expression of STAT1, IRF-1, or GATA-1 enhanced phosphorylation of STAT1, STAT3, and STAT5 in cultured Gata1-deficient murine megakaryocytes, with concomitant megakaryocyte maturation. In contrast, enhanced thrombopoietin signaling, conferred by enforced expression of constitutively active JAK2 or c-MPL, induced phosphorylation of STAT3 and STAT5, but not STAT1, and failed to rescue megakaryocyte maturation. Finally, megakaryocytes from Stat1(-/-) mice were defective in polyploidization. Together, these findings reveal a unique role for STAT1 in megakaryopoiesis and provide new insights into how GATA-1 regulates this process. Our studies elucidate potential mechanisms by which various inflammatory disorders can cause elevated platelet counts.


Assuntos
Plaquetas/metabolismo , Fator de Transcrição GATA1/metabolismo , Megacariócitos/metabolismo , Fator de Transcrição STAT1/metabolismo , Trombocitose/metabolismo , Trombopoese , Animais , Plaquetas/patologia , Células Cultivadas , Fator de Transcrição GATA1/genética , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Megacariócitos/patologia , Camundongos , Camundongos Knockout , Fosforilação , Contagem de Plaquetas , Ploidias , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Trombocitose/genética , Trombocitose/patologia , Trombopoese/genética
11.
Trends Cell Biol ; 15(3): 146-55, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15752978

RESUMO

Erythropoietin (EPO) is the crucial cytokine regulator of red blood-cell production. Since the discovery of EPO in 1985 and the isolation of its cognate receptor four years later, there has been significant interest in understanding the unique ability of this ligand-receptor pair to promote erythroid mitogenesis, survival and differentiation. The development of knockout mice has elucidated the precise role of the ligand, receptor and downstream players in murine erythroid development. In this review, we summarize EPO-mediated signaling pathways and examine their significance in vivo.


Assuntos
Eritropoese/fisiologia , Eritropoetina/fisiologia , Transdução de Sinais , Animais , Cálcio/metabolismo , Diferenciação Celular , Linhagem da Célula , Sobrevivência Celular , Eritropoetina/metabolismo , Humanos , Janus Quinase 2 , Ligantes , Camundongos , Modelos Biológicos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores da Eritropoetina/fisiologia , Tirosina/química , Domínios de Homologia de src
13.
Curr Biol ; 12(6): 446-53, 2002 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-11909529

RESUMO

BACKGROUND: The immune response is regulated through a tightly controlled cytokine network. The counteracting balance between protein tyrosine kinase (PTK) and protein tyrosine phosphatase (PTP) activity regulates intracellular signaling in the immune system initiated by these extracellular polypeptides. Mice deficient for the T cell protein tyrosine phosphatase (TCPTP) display gross defects in the hematopoietic compartment, indicating a critical role for TCPTP in the regulation of immune homeostasis. To date, the molecular basis underlying this phenotype has not been reported. RESULTS: We have identified two members of the Janus family of tyrosine kinases (JAKs), JAK1 and JAK3, as bona fide substrates of TCPTP. Inherent substrate specificity in the TCPTP-JAK interaction is demonstrated by the inability of other closely related PTP family members to form an in vivo interaction with the JAKs in hematopoietic cells. In keeping with a negative regulatory role for TCPTP in cytokine signaling, expression of TCPTP in T cells abrogated phosphorylation of STAT5 following interleukin (IL)-2 stimulation. TCPTP-deficient lymphocytes treated with IL-2 had increased levels of tyrosine-phosphorylated STAT5, and thymocytes treated with interferon (IFN)-alpha or IFN-gamma had increased tyrosine-phosphorylated STAT1. Hyperphosphorylation of JAK1 and elevated expression of iNOS was observed in IFN-gamma-treated, TCPTP-deficient, bone marrow-derived macrophages. CONCLUSIONS: We have identified JAK1 and JAK3 as physiological substrates of TCPTP. These results indicate a negative regulatory role for TCPTP in cytokine signaling and provide insight into the molecular defect underlying the phenotype of TCPTP-deficient animals.


Assuntos
Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Linfócitos T/metabolismo , Animais , Ácido Aspártico/genética , Proteínas de Ligação a DNA/metabolismo , Interleucina-2/metabolismo , Interleucina-2/farmacologia , Janus Quinase 1 , Janus Quinase 3 , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Mutação , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II , Fosforilação , Testes de Precipitina , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Proteínas Tirosina Fosfatases/genética , Fator de Transcrição STAT1 , Transdução de Sinais , Linfócitos T/efeitos dos fármacos , Transativadores/metabolismo
14.
Mol Ther Methods Clin Dev ; 5: 241-258, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28603745

RESUMO

Fabry disease is a rare lysosomal storage disorder (LSD). We designed multiple recombinant lentivirus vectors (LVs) and tested their ability to engineer expression of human α-galactosidase A (α-gal A) in transduced Fabry patient CD34+ hematopoietic cells. We further investigated the safety and efficacy of a clinically directed vector, LV/AGA, in both ex vivo cell culture studies and animal models. Fabry mice transplanted with LV/AGA-transduced hematopoietic cells demonstrated α-gal A activity increases and lipid reductions in multiple tissues at 6 months after transplantation. Next we found that LV/AGA-transduced Fabry patient CD34+ hematopoietic cells produced even higher levels of α-gal A activity than normal CD34+ hematopoietic cells. We successfully transduced Fabry patient CD34+ hematopoietic cells with "near-clinical grade" LV/AGA in small-scale cultures and then validated a clinically directed scale-up transduction process in a GMP-compliant cell processing facility. LV-transduced Fabry patient CD34+ hematopoietic cells were subsequently infused into NOD/SCID/Fabry (NSF) mice; α-gal A activity corrections and lipid reductions were observed in several tissues 12 weeks after the xenotransplantation. Additional toxicology studies employing NSF mice xenotransplanted with the therapeutic cell product demonstrated minimal untoward effects. These data supported our successful clinical trial application (CTA) to Health Canada and opening of a "first-in-the-world" gene therapy trial for Fabry disease.

15.
Blood ; 113(16): 3650-1, 2009 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-19372263
16.
Mol Ther Methods Clin Dev ; 3: 16074, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27933304

RESUMO

Interleukin-12 (IL-12) is a potent cytokine that may be harnessed to treat cancer. To date, nearly 100 IL-12-based clinical trials have been initiated worldwide. Yet systemic administration of IL-12 is toxic. Different strategies are being developed to reduce such toxicities by restricting IL-12 distribution. Our previous studies employed lentivector-mediated expression of murine IL-12 in tumor cells and demonstrated effective protection in both mouse leukemia and solid tumor challenge models. In this study, we carried out preclinical validation studies using a novel lentivector to engineer expression of human IL-12 in acute myeloid leukemia blast cells isolated from 21 patients. Acute myeloid leukemia cells were transduced with a bicistronic lentivector that encodes the human IL-12 cDNA as a fusion, as well as a LNGFR (ΔLNGFR)/mutant thymidylate kinase cassette as a marking and cell-fate control element. A range of 20-70% functional transduction efficiencies was achieved. Transduced acute myeloid leukemia cells produced bioactive IL-12 protein and displayed dose-dependent sensitivity to the prodrug 3'-azido-3'-deoxythymidine. In vitro immortalization assays using transduced mouse hematopoietic stem cells demonstrated minimal genotoxic risk from our IL-12 vector. Scale-up transduction and cell processing was subsequently validated in a GMP facility to support our (now approved) Clinical Trial Application (CTA).

17.
Oncotarget ; 7(3): 2765-79, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26624983

RESUMO

Targeting Bruton's tyrosine kinase (BTK) with the small molecule BTK inhibitor ibrutinib has significantly improved patient outcomes in several B-cell malignancies, with minimal toxicity. Given the reported expression and constitutive activation of BTK in acute myeloid leukemia (AML) cells, there has been recent interest in investigating the anti-AML activity of ibrutinib. We noted that ibrutinib had limited single-agent toxicity in a panel of AML cell lines and primary AML samples, and therefore sought to identify ibrutinib-sensitizing drugs. Using a high-throughput combination chemical screen, we identified that the poly(ADP-ribose) glycohydrolase (PARG) inhibitor ethacridine lactate synergized with ibrutinib in TEX and OCI-AML2 leukemia cell lines. The combination of ibrutinib and ethacridine induced a synergistic increase in reactive oxygen species that was functionally important to explain the observed cell death. Interestingly, synergistic cytotoxicity of ibrutinib and ethacridine was independent of the inhibitory effect of ibrutinib against BTK, as knockdown of BTK did not sensitize TEX and OCI-AML2 cells to ethacridine treatment. Thus, our findings indicate that ibrutinib may have a BTK-independent role in AML and that PARG inhibitors may have utility as part of a combination therapy for this disease.


Assuntos
Apoptose/efeitos dos fármacos , Etacridina/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/genética , Pirazóis/farmacologia , Pirimidinas/farmacologia , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia , Animais , Linhagem Celular Tumoral , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Taninos Hidrolisáveis/farmacologia , Células Jurkat , Camundongos , Camundongos SCID , Piperidinas , Interferência de RNA , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo
18.
Cell Calcium ; 37(2): 173-82, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15589997

RESUMO

TRPC2 is a member of the transient receptor potential (TRP) superfamily of Ca2+-permeable channels expressed in nonexcitable cells. TRPC2 is involved in a number of physiological processes including sensory activation of the vomeronasal organ, sustained Ca2+ entry in sperm, and regulation of calcium influx by erythropoietin. Here, a new splice variant of TRPC2, called "Similar to mouse TRPC2" (smTRPC2), was identified consisting of 213 amino acids, largely coincident with the N-terminus of TRPC2 clone 17. This splice variant lacks all six TRPC2 transmembrane domains and the calcium pore. Expression of smTRPC2 was found in all tissues examined by RT-PCR and in primary erythroid cells by RT-PCR and Western blotting. Confocal microscopy of CHO-S cells transfected with TRPC2 clone 14 and smTRPC2 demonstrated that TRPC2 clone 14 and smTRPC2 both localize at or near the plasma membrane and in the perinuclear region. Cell surface localization of TRPC2 was confirmed with biotinylation, and was not substantially affected by smTRPC2 expression. Coassociation of TRPC2 c14 and alpha with smTRPC2 was confirmed by immunoprecipitation. To examine the functional significance of smTRPC2 expression, a CHO-S model was used to study its effect on calcium influx stimulated by Epo through TRPC2. Single CHO-S cells which express transfected Epo-R were identified by detection of green fluorescent protein (GFP). Cells that express transfected TRPC2 c14 or alpha were identified by detection of blue fluorescent protein (BFP). [Ca]i was quantitiated with Fura Red fluorescence using digital video imaging. Epo stimulated calcium influx through TRPC2 isoforms c14 and alpha, which was inhibited by coexpression of smTRPC2. These data demonstrate that a short splice variant of TRPC2 exists in many cell types, which associates with and modifies the activity of functional TRPC2 splice variants.


Assuntos
Processamento Alternativo , Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Animais , Imuno-Histoquímica , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Dados de Sequência Molecular , RNA Mensageiro/metabolismo , Canais de Cátion TRPC
19.
Int J Oncol ; 24(4): 1017-26, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15010843

RESUMO

Constitutive activation of Janus kinases (JAKs) is frequently detected in various human cancers. The activation of JAKs results in the phosphorylation and activation of signal transducers and activators of transcription (STATs). The constitutive activation of JAK/STAT pathway may play an important role in growth and survival of human cancer cells. In this study, we examined whether a chemotherapeutic agent cisplatin could inhibit the JAK/STAT pathway. In ovarian cancer and sarcoma cells that express constitutively active JAK2, cisplatin significantly inhibited tyrosine phosphorylation and kinase activity of JAK2 in a dose- and time-dependent manner. Meanwhile, cisplatin also inhibited Stat3 tyrosine phosphorylation and down-regulated BcL-XL anti-apoptotic protein in the cancer cells tested. In leukemia cells expressing high level of TEL-JAK2 fusion protein, cisplatin dramatically inhibited tyrosine phosphorylation of TEL-JAK2 as well. Furthermore, our results have shown that down-regulation of JAK2 by cisplatin might be through modulation of a tyrosine phosphatase SHP-1 but not SOCS family members. Taken together, our observations demonstrated that cisplatin down-regulated the JAK/STAT pathway through de-phosphorylation of JAK/STAT in cancer cells.


Assuntos
Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Ovarianas/tratamento farmacológico , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas , Sarcoma/tratamento farmacológico , Apoptose/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Janus Quinase 2 , Proteínas de Fusão Oncogênica/metabolismo , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/patologia , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 6 , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Repressoras/metabolismo , Fator de Transcrição STAT3 , Sarcoma/enzimologia , Sarcoma/patologia , Transdução de Sinais , Proteína 1 Supressora da Sinalização de Citocina , Proteínas Supressoras da Sinalização de Citocina , Transativadores/metabolismo , Células Tumorais Cultivadas , Tirosina/metabolismo , Proteína bcl-X
20.
PLoS One ; 8(9): e75472, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086539

RESUMO

Utilizing ENU mutagenesis, we identified a mutant mouse with elevated platelets. Genetic mapping localized the mutation to an interval on chromosome 19 that encodes the Jak2 tyrosine kinase. We identified a A3056T mutation resulting in a premature stop codon within exon 19 of Jak2 (Jak2(K915X)), resulting in a protein truncation and functionally inactive enzyme. This novel platelet phenotype was also observed in mice bearing a hemizygous targeted disruption of the Jak2 locus (Jak2(+/-)). Timed pregnancy experiments revealed that Jak2(K915X/K915X) and Jak2(-/-) displayed embryonic lethality; however, Jak2(K915X/K915X) embryos were viable an additional two days compared to Jak2(-/-) embryos. Our data suggest that perturbing JAK2 activation may have unexpected consequences in elevation of platelet number and correspondingly, important implications for treatment of hematological disorders with constitutive Jak2 activity.


Assuntos
Plaquetas/citologia , Janus Quinase 2/genética , Fenótipo , Animais , Western Blotting , Mapeamento Cromossômico , Etilnitrosoureia , Fluoruracila , Genótipo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutagênese/genética , Fenil-Hidrazinas , Mutação Puntual/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA