RESUMO
ABSTRACT: In physiological conditions, few circulating hematopoietic stem/progenitor cells (cHSPCs) are present in the peripheral blood, but their contribution to human hematopoiesis remain unsolved. By integrating advanced immunophenotyping, single-cell transcriptional and functional profiling, and integration site (IS) clonal tracking, we unveiled the biological properties and the transcriptional features of human cHSPC subpopulations in relationship to their bone marrow (BM) counterpart. We found that cHSPCs reduced in cell count over aging and are enriched for primitive, lymphoid, and erythroid subpopulations, showing preactivated transcriptional and functional state. Moreover, cHSPCs have low expression of multiple BM-retention molecules but maintain their homing potential after xenotransplantation. By generating a comprehensive human organ-resident HSPC data set based on single-cell RNA sequencing data, we detected organ-specific seeding properties of the distinct trafficking HSPC subpopulations. Notably, circulating multi-lymphoid progenitors are primed for seeding the thymus and actively contribute to T-cell production. Human clonal tracking data from patients receiving gene therapy (GT) also showed that cHSPCs connect distant BM niches and participate in steady-state hematopoietic production, with primitive cHSPCs having the highest recirculation capability to travel in and out of the BM. Finally, in case of hematopoietic impairment, cHSPCs composition reflects the BM-HSPC content and might represent a biomarker of the BM state for clinical and research purposes. Overall, our comprehensive work unveiled fundamental insights into the in vivo dynamics of human HSPC trafficking and its role in sustaining hematopoietic homeostasis. GT patients' clinical trials were registered at ClinicalTrials.gov (NCT01515462 and NCT03837483) and EudraCT (2009-017346-32 and 2018-003842-18).
Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Homeostase , Animais , Humanos , Camundongos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Análise de Célula ÚnicaRESUMO
Common variable immunodeficiency (CVID) is the most frequent primary antibody deficiency whereby follicular helper T (Tfh) cells fail to establish productive responses with B cells in germinal centers. Here, we analyzed the frequency, phenotype, transcriptome, and function of circulating Tfh (cTfh) cells in CVID patients displaying autoimmunity as an additional phenotype. A group of patients showed a high frequency of cTfh1 cells and a prominent expression of PD-1 and ICOS as well as a cTfh mRNA signature consistent with highly activated, but exhausted, senescent, and apoptotic cells. Plasmatic CXCL13 levels were elevated in this group and positively correlated with cTfh1 cell frequency and PD-1 levels. Monoallelic variants in RTEL1, a telomere length- and DNA repair-related gene, were identified in four patients belonging to this group. Their blood lymphocytes showed shortened telomeres, while their cTfh were more prone to apoptosis. These data point toward a novel pathogenetic mechanism in CVID, whereby alterations in DNA repair and telomere elongation might predispose to antibody deficiency. A Th1, highly activated but exhausted and apoptotic cTfh phenotype was associated with this form of CVID.
Assuntos
Imunodeficiência de Variável Comum , Apoptose/genética , Imunodeficiência de Variável Comum/genética , Humanos , Receptor de Morte Celular Programada 1/genética , Células T Auxiliares Foliculares , Linfócitos T Auxiliares-IndutoresRESUMO
Allogeneic hematopoietic stem cell transplantation is the treatment of choice for autosomal recessive osteopetrosis caused by defects in the TCIRG1 gene. Despite recent progress in conditioning, a relevant number of patients are not eligible for allogeneic stem cell transplantation because of the severity of the disease and significant transplant-related morbidity. We exploited peripheral CD34+ cells, known to circulate at high frequency in the peripheral blood of TCIRG1-deficient patients, as a novel cell source for autologous transplantation of gene corrected cells. Detailed phenotypical analysis showed that circulating CD34+ cells have a cellular composition that resembles bone marrow, supporting their use in gene therapy protocols. Transcriptomic profile revealed enrichment in genes expressed by hematopoietic stem and progenitor cells (HSPCs). To overcome the limit of bone marrow harvest/ HSPC mobilization and serial blood drawings in TCIRG1 patients, we applied UM171-based ex-vivo expansion of HSPCs coupled with lentiviral gene transfer. Circulating CD34+ cells from TCIRG1-defective patients were transduced with a clinically-optimized lentiviral vector (LV) expressing TCIRG1 under the control of phosphoglycerate promoter and expanded ex vivo. Expanded cells maintained long-term engraftment capacity and multi-lineage repopulating potential when transplanted in vivo both in primary and secondary NSG recipients. Moreover, when CD34+ cells were differentiated in vitro, genetically corrected osteoclasts resorbed the bone efficiently. Overall, we provide evidence that expansion of circulating HSPCs coupled to gene therapy can overcome the limit of stem cell harvest in osteopetrotic patients, thus opening the way to future gene-based treatment of skeletal diseases caused by bone marrow fibrosis.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Osteopetrose , ATPases Vacuolares Próton-Translocadoras , Antígenos CD34 , Terapia Genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Osteoclastos/metabolismo , Osteopetrose/genética , Osteopetrose/terapia , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismoRESUMO
BACKGROUND: Septic shock (SS) and cardiogenic shock (CS) are two types of circulatory shock with a different etiology. Several studies have described the molecular alterations in SS patients, whereas the molecular factors involved in CS have been poorly investigated. We aimed to assess in the whole blood of CS and SS patients, using septic patients without shock (SC) as controls, transcriptomic modifications that occur over 1 week after ICU admission and are common to the two types of shock. METHODS: We performed whole blood RNA sequencing in 21 SS, 11 CS, and 5 SC. In shock patients, blood samples were collected within 16 h from ICU admission (T1), 48 h after ICU admission (T2), and at day 7 or before discharge (T3). In controls, blood samples were available at T1 and T2. Gene expression changes over time have been studied in CS, SS, and SC separately with a paired analysis. Genes with p value < 0.01 (Benjamini-Hochberg multiple test correction) were defined differentially expressed (DEGs). We used gene set enrichment analysis (GSEA) to identify the biological processes and transcriptional regulators significantly enriched in both types of shock. RESULTS: In both CS and SS patients, GO terms of inflammatory response and pattern recognition receptors (PRRs) were downregulated following ICU admission, whereas gene sets of DNA replication were upregulated. At the gene level, we observed that alarmins, interleukin receptors, PRRs, inflammasome, and DNA replication genes significantly changed their expression in CS and SS, but not in SC. Analysis of transcription factor targets showed in both CS and SS patients, an enrichment of CCAAT-enhancer-binding protein beta (CEBPB) targets in genes downregulated over time and an enrichment of E2F targets in genes with an increasing expression trend. CONCLUSIONS: This pilot study supports, within the limits of a small sample size, the role of alarmins, PRRs, DNA replication, and immunoglobulins in the pathophysiology of circulatory shock, either in the presence of infection or not. We hypothesize that these genes could be potential targets of therapeutic interventions in CS and SS. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02141607. Registered 19 May 2014.
Assuntos
Perfilação da Expressão Gênica/métodos , Choque Cardiogênico/sangue , Choque Séptico/sangue , APACHE , Idoso , Idoso de 80 Anos ou mais , Alarminas/análise , Alarminas/sangue , Análise de Variância , Bélgica , Replicação do DNA/fisiologia , Feminino , Perfilação da Expressão Gênica/instrumentação , Humanos , Inflamassomos/análise , Inflamassomos/sangue , Unidades de Terapia Intensiva/organização & administração , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Receptores de Interleucina/análise , Receptores de Interleucina/sangue , Receptores de Reconhecimento de Padrão/análise , Receptores de Reconhecimento de Padrão/sangue , Análise de Sequência de RNA/métodos , Choque Cardiogênico/fisiopatologia , Choque Séptico/fisiopatologia , SuíçaRESUMO
BACKGROUND: Septic shock is the most severe complication of sepsis and this syndrome is associated with high mortality. Treatment of septic shock remains largely supportive of hemodynamics and tissue perfusion. Early changes in organ function assessed by the Sequential Organ Function Assessment (SOFA) score are highly predictive of the outcome. However, the individual patient's response to supportive therapy is very heterogeneous, and the mechanisms underlying this variable response remain elusive. The aim of the study was to investigate the transcriptome of whole blood in septic shock patients with different responses to early supportive hemodynamic therapy assessed by changes in SOFA scores within the first 48 h from intensive care unit (ICU) admission. METHODS: We performed whole blood RNA sequencing in 31 patients: 17 classified as responders (R) and 14 as non-responders (NR). Gene expression was investigated at ICU admission (time point 1, or T1), comparing R with NR [padj < 0.01; Benjamini-Hochberg (BH)] and over time from T1 to T2 (48 h later) in R and NR independently (paired analysis, padj < 0.01; BH). Then the differences in gene expression trends over time were evaluated (Mann-Whitney, P <0.01). To identify enriched biological processes, we performed an over-representation analysis based on a right-sided hypergeometric test with Bonferroni step-down as multiple testing correction (padj < 0.05). RESULTS: At ICU admission, we did not identify differentially expressed genes (DEGs) between the two groups. In the transition from T1 to T2, the activation of genes involved in T cell-mediated immunity, granulocyte and natural killer (NK) cell functions, and pathogen lipid clearance was noted in the R group. Genes involved in acute inflammation were downregulated in both groups. CONCLUSIONS: Within the limits of a small sample size, our results could suggest that early activation of genes of the adaptive immune response is associated with an improvement in organ function.
Assuntos
Choque Séptico/terapia , Transcriptoma/fisiologia , APACHE , Adulto , Idoso , Idoso de 80 Anos ou mais , Bélgica , Feminino , Humanos , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Escores de Disfunção Orgânica , Choque Séptico/fisiopatologia , Estatísticas não Paramétricas , SuíçaRESUMO
BACKGROUND: The authors describe a family with a high penetrance of plasma cell dyscrasias, suggesting inheritance of an autosomal dominant risk allele. METHODS: The authors performed whole-exome sequencing and reported on a combined approach aimed at the identification of causative variants and risk loci, using the wealth of data provided by this approach. RESULTS: The authors identified gene mutations and single-nucleotide polymorphisms of potential significance, and pinpointed a known risk locus for myeloma as a potential area of transmissible risk in the family. CONCLUSIONS: To the authors' knowledge, the current study is the first to provide a whole-exome sequencing approach to such cases, and a framework analysis that could be applied to further understanding of the inherited risk of developing plasma cell dyscrasias. Cancer 2017;123:3701-3708. © 2017 American Cancer Society.
Assuntos
Alelos , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Paraproteinemias/genética , Penetrância , Polimorfismo de Nucleotídeo Único , Família , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/genética , Linhagem , RiscoRESUMO
The phenotypic effect of some single nucleotide polymorphisms (SNPs) depends on their parental origin. We present a novel approach to detect parent-of-origin effects (POEs) in genome-wide genotype data of unrelated individuals. The method exploits increased phenotypic variance in the heterozygous genotype group relative to the homozygous groups. We applied the method to >56,000 unrelated individuals to search for POEs influencing body mass index (BMI). Six lead SNPs were carried forward for replication in five family-based studies (of â¼4,000 trios). Two SNPs replicated: the paternal rs2471083-C allele (located near the imprinted KCNK9 gene) and the paternal rs3091869-T allele (located near the SLC2A10 gene) increased BMI equally (betaâ=â0.11 (SD), P<0.0027) compared to the respective maternal alleles. Real-time PCR experiments of lymphoblastoid cell lines from the CEPH families showed that expression of both genes was dependent on parental origin of the SNPs alleles (P<0.01). Our scheme opens new opportunities to exploit GWAS data of unrelated individuals to identify POEs and demonstrates that they play an important role in adult obesity.
Assuntos
Proteínas Facilitadoras de Transporte de Glucose/genética , Obesidade/genética , Polimorfismo de Nucleotídeo Único/genética , Canais de Potássio de Domínios Poros em Tandem/genética , Adulto , Índice de Massa Corporal , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Impressão Genômica , Genótipo , Humanos , Masculino , Obesidade/patologia , População Branca/genéticaRESUMO
BACKGROUND: Paraoxonase 1 (PON1) gene polymorphisms and polyphenols intake have been reported independently associated to lipid profile and susceptibility to atherosclerosis and cardiovascular disease. However, the interaction between these factors remains to be investigated. We performed an observational nutrigenetic study to examine whether the interaction between polyphenols and anthocyanins intake and PON1 genetic variants can modulate biomarkers of cardiovascular health in an Italian healthy population. METHODS: We recruited 443 healthy volunteers who participated in the EC funded ATHENA project (AnThocyanin and polyphenols bioactive for Health Enhancement through Nutritional Advancement). Data collection included detailed demographic, clinical, dietary, lifestyle, biochemical and genetic data. Polyphenols and anthocyanins intake was measured by 24 h dietary recall repeated three times a year in order to get seasonal variations. We tested the interaction between 18 independent tagging SNPs in PON1 gene and polyphenols intake on HDL, LDL, cholesterol, triglycerides and atherogenic index of plasma. RESULTS: Without considering the genetic background, we could not observe significant differences in the lipid profile between high and low polyphenols and anthocyanins intake. Using a nutrigenetic approach, we identified protective genotypes in four independent polymorphisms that, at Bonferroni level (p ≤ 0.0028), present a significant association with increased HDL level under high polyphenols and anthocyanins intake, compared to risk genotypes (rs854549, Beta = 4.7 per C allele; rs854552, Beta = 5.6 per C allele; rs854571, Beta = 3.92 per T allele; rs854572, Beta = 3.94 per C allele). CONCLUSIONS: We highlight the protective role of genetic variants in PON1 towards cardiovascular risk under high polyphenols and anthocyanins consumption. PON1 variants could represent novel biomarkers to stratify individuals who might benefit from targeted dietary recommendation for health promotion and strategies of preventive medicine.
Assuntos
Arildialquilfosfatase/genética , Biomarcadores/metabolismo , Doenças Cardiovasculares/genética , Nutrigenômica , Polimorfismo de Nucleotídeo Único/genética , Polifenóis/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antocianinas/farmacologia , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto JovemRESUMO
Myofibrillar myopathies (MFMs) are genetically heterogeneous dystrophies characterized by the disintegration of Z-disks and myofibrils and are associated with mutations in genes encoding Z-disk or Z-disk-related proteins. The c.626 C > T (p.P209L) mutation in the BAG3 gene has been described as causative of a subtype of MFM. We report a sporadic case of a 26-year-old Italian woman, affected by MFM with axonal neuropathy, cardiomyopathy, rigid spine, who carries the c.626 C > T mutation in the BAG3 gene. The patient and her non-consanguineous healthy parents and brother were studied with whole exome sequencing (WES) to further investigate the genetic basis of this complex phenotype. In the patient, we found that the BAG3 mutation is associated with variants in the NRAP and FHL1 genes that encode muscle-specific, LIM domain containing proteins. Quantitative real time PCR, immunohistochemistry and Western blot analysis of the patient's muscular biopsy showed the absence of NRAP expression and FHL1 accumulation in aggregates in the affected skeletal muscle tissue. Molecular dynamic analysis of the mutated FHL1 domain showed a modification in its surface charge, which could affect its capability to bind its target proteins. To our knowledge this is the first study reporting, in a BAG3 MFM, the simultaneous presence of genetic variants in the BAG3 and FHL1 genes (previously described as independently associated with MFMs) and linking the NRAP gene to MFM for the first time.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/genética , Proteínas Musculares/genética , Miopatias Congênitas Estruturais/genética , Adulto , Exoma , Feminino , Humanos , Itália , TransfecçãoRESUMO
BACKGROUND: In mice MEOX2/TCF15 heterodimers are highly expressed in heart endothelial cells and are involved in the transcriptional regulation of lipid transport. In a general population, we investigated whether genetic variation in these genes predicted coronary heart disease (CHD). RESULTS: In 2027 participants randomly recruited from a Flemish population (51.0 % women; mean age 43.6 years), we genotyped six SNPs in MEOX2 and four in TCF15. Over 15.2 years (median), CHD, myocardial infarction, coronary revascularisation and ischaemic cardiomyopathy occurred in 106, 53, 78 and 22 participants. For SNPs, we contrasted CHD risk in minor-allele heterozygotes and homozygotes (variant) vs. major-allele homozygotes (reference) and for haplotypes carriers (variant) vs. non-carriers. In multivariable-adjusted analyses with correction for multiple testing, CHD risk was associated with MEOX2 SNPs (P ≤ 0.049), but not with TCF15 SNPs (P ≥ 0.29). The MEOX2 GTCCGC haplotype (frequency 16.5 %) was associated with the sex- and age-standardised CHD incidence (5.26 vs. 3.03 events per 1000 person-years; P = 0.036); the multivariable-adjusted hazard ratio [HR] of CHD was 1.78 (95 % confidence interval, 1.25-2.56; P = 0.0054). For myocardial infarction, coronary revascularisation, and ischaemic cardiomyopathy, the corresponding HRs were 1.96 (1.16-3.31), 1.87 (1.20-2.91) and 3.16 (1.41-7.09), respectively. The MEOX2 GTCCGC haplotype significantly improved the prediction of CHD over and beyond traditional risk factors and was associated with similar population-attributable risk as smoking (18.7 % vs. 16.2 %). CONCLUSIONS: Genetic variation in MEOX2, but not TCF15, is a strong predictor of CHD. Further experimental studies should elucidate the underlying molecular mechanisms.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/genética , Etnicidade/genética , Variação Genética , Proteínas de Homeodomínio/genética , Adulto , Bélgica/epidemiologia , Comorbidade , Feminino , Genótipo , Haplótipos , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Adulto JovemRESUMO
Hematopoietic stem cell gene therapy (GT) using a γ-retroviral vector (γ-RV) is an effective treatment for Severe Combined Immunodeficiency due to Adenosine Deaminase deficiency. Here, we describe a case of GT-related T-cell acute lymphoblastic leukemia (T-ALL) that developed 4.7 years after treatment. The patient underwent chemotherapy and haploidentical transplantation and is currently in remission. Blast cells contain a single vector insertion activating the LIM-only protein 2 (LMO2) proto-oncogene, confirmed by physical interaction, and low Adenosine Deaminase (ADA) activity resulting from methylation of viral promoter. The insertion is detected years before T-ALL in multiple lineages, suggesting that further hits occurred in a thymic progenitor. Blast cells contain known and novel somatic mutations as well as germline mutations which may have contributed to transformation. Before T-ALL onset, the insertion profile is similar to those of other ADA-deficient patients. The limited incidence of vector-related adverse events in ADA-deficiency compared to other γ-RV GT trials could be explained by differences in transgenes, background disease and patient's specific factors.
Assuntos
Adenosina Desaminase , Agamaglobulinemia , Terapia Genética , Vetores Genéticos , Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Proto-Oncogene Mas , Imunodeficiência Combinada Severa , Humanos , Adenosina Desaminase/deficiência , Adenosina Desaminase/genética , Terapia Genética/métodos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Imunodeficiência Combinada Severa/terapia , Imunodeficiência Combinada Severa/genética , Vetores Genéticos/genética , Agamaglobulinemia/terapia , Agamaglobulinemia/genética , Masculino , Retroviridae/genéticaRESUMO
Recombination activating genes (RAGs) are tightly regulated during lymphoid differentiation, and their mutations cause a spectrum of severe immunological disorders. Hematopoietic stem and progenitor cell (HSPC) transplantation is the treatment of choice but is limited by donor availability and toxicity. To overcome these issues, we developed gene editing strategies targeting a corrective sequence into the human RAG1 gene by homology-directed repair (HDR) and validated them by tailored two-dimensional, three-dimensional, and in vivo xenotransplant platforms to assess rescue of expression and function. Whereas integration into intron 1 of RAG1 achieved suboptimal correction, in-frame insertion into exon 2 drove physiologic human RAG1 expression and activity, allowing disruption of the dominant-negative effects of unrepaired hypomorphic alleles. Enhanced HDR-mediated gene editing enabled the correction of human RAG1 in HSPCs from patients with hypomorphic RAG1 mutations to overcome T and B cell differentiation blocks. Gene correction efficiency exceeded the minimal proportion of functional HSPCs required to rescue immunodeficiency in Rag1-/- mice, supporting the clinical translation of HSPC gene editing for the treatment of RAG1 deficiency.
Assuntos
Edição de Genes , Transplante de Células-Tronco Hematopoéticas , Animais , Humanos , Camundongos , Éxons , Edição de Genes/métodos , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismoRESUMO
Base and prime editors (BEs and PEs) may provide more precise genetic engineering than nuclease-based approaches because they bypass the dependence on DNA double-strand breaks. However, little is known about their cellular responses and genotoxicity. Here, we compared state-of-the-art BEs and PEs and Cas9 in human hematopoietic stem and progenitor cells with respect to editing efficiency, cytotoxicity, transcriptomic changes and on-target and genome-wide genotoxicity. BEs and PEs induced detrimental transcriptional responses that reduced editing efficiency and hematopoietic repopulation in xenotransplants and also generated DNA double-strand breaks and genotoxic byproducts, including deletions and translocations, at a lower frequency than Cas9. These effects were strongest for cytidine BEs due to suboptimal inhibition of base excision repair and were mitigated by tailoring delivery timing and editor expression through optimized mRNA design. However, BEs altered the mutational landscape of hematopoietic stem and progenitor cells across the genome by increasing the load and relative proportions of nucleotide variants. These findings raise concerns about the genotoxicity of BEs and PEs and warrant further investigation in view of their clinical application.
RESUMO
Chronic myeloid leukemia (CML) is a rare myeloproliferative disorder caused by the reciprocal translocation t(9;22)(q34;q11) in hematopoietic stem cells (HSCs). This chromosomal translocation results in the formation of an extra-short chromosome 22, called a Philadelphia chromosome (Ph), containing the BCR-ABL1 fusion gene responsible for the expression of a constitutively active tyrosine kinase that causes uncontrolled growth and replication of leukemic cells. Mechanisms behind the formation of this chromosomal rearrangement are not well known, even if, as observed in tumors, repetitive DNA may be involved as core elements in chromosomal rearrangements. We have participated in the explorative investigations of the PhilosoPhi34 study to evaluate residual Ph+ cells in patients with negative FISH analysis on CD34+/lin- cells with gDNA qPCR. Using targeted next-generation deep sequencing strategies, we analyzed the genomic region around the t(9;22) translocations of 82 CML patients and one CML cell line and assessed the relevance of interspersed repeat elements at breakpoints (BP). We found a statistically higher presence of LINE elements, in particular belonging to the subfamily L1M, in BP cluster regions of both chromosome 22 and 9 compared to the whole human genome. These data suggest that L1M elements could be potential drivers of t(9;22) translocation leading to the generation of the BCR-ABL1 chimeric gene and the expression of the active BCR-ABL1-controlled tyrosine kinase chimeric protein responsible for CML.
Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Transtornos Mieloproliferativos , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Cromossomo Filadélfia , Translocação Genética , Proteínas de Fusão bcr-abl/genética , Transtornos Mieloproliferativos/genéticaRESUMO
Acute myeloid leukemia may be characterized by a fraction of leukemia stem cells (LSCs) that sustain disease propagation eventually leading to relapse. Yet, the contribution of LSCs to early therapy resistance and AML regeneration remains controversial. We prospectively identify LSCs in AML patients and xenografts by single-cell RNA sequencing coupled with functional validation by a microRNA-126 reporter enriching for LSCs. Through nucleophosmin 1 (NPM1) mutation calling or chromosomal monosomy detection in single-cell transcriptomes, we discriminate LSCs from regenerating hematopoiesis, and assess their longitudinal response to chemotherapy. Chemotherapy induced a generalized inflammatory and senescence-associated response. Moreover, we observe heterogeneity within progenitor AML cells, some of which proliferate and differentiate with expression of oxidative-phosphorylation (OxPhos) signatures, while others are OxPhos (low) miR-126 (high) and display enforced stemness and quiescence features. miR-126 (high) LSCs are enriched at diagnosis in chemotherapy-refractory AML and at relapse, and their transcriptional signature robustly stratifies patients for survival in large AML cohorts.
Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Humanos , Células-Tronco Neoplásicas/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , MicroRNAs/metabolismo , RecidivaRESUMO
Complete elimination of B-cell acute lymphoblastic leukemia (B-ALL) by a risk-adapted primary treatment approach remains a clinical key objective, which fails in up to a third of patients. Recent evidence has implicated subpopulations of B-ALL cells with stem-like features in disease persistence. We hypothesized that microRNA-126, a core regulator of hematopoietic and leukemic stem cells, may resolve intratumor heterogeneity in B-ALL and uncover therapy-resistant subpopulations. We exploited patient-derived xenograft (PDX) models with B-ALL cells transduced with a miR-126 reporter allowing the prospective isolation of miR-126(high) cells for their functional and transcriptional characterization. Discrete miR-126(high) populations, often characterized by MIR126 locus demethylation, were identified in 8/9 PDX models and showed increased repopulation potential, in vivo chemotherapy resistance and hallmarks of quiescence, inflammation and stress-response pathway activation. Cells with a miR-126(high) transcriptional profile were identified as distinct disease subpopulations by single-cell RNA sequencing in diagnosis samples from adult and pediatric B-ALL. Expression of miR-126 and locus methylation were tested in several pediatric and adult B-ALL cohorts, which received standardized treatment. High microRNA-126 levels and locus demethylation at diagnosis associate with suboptimal response to induction chemotherapy (MRD > 0.05% at day +33 or MRD+ at day +78).
Assuntos
Linfoma de Burkitt , MicroRNAs , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Humanos , Criança , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , MicroRNAs/genética , MicroRNAs/metabolismoRESUMO
The immunological events leading to type 1 diabetes (T1D) are complex and heterogeneous, underscoring the necessity to study rare cases to improve our understanding. Here, we report the case of a 16-year-old patient who showed glycosuria during a regular checkup. Upon further evaluation, stage 2 T1D, autoimmune thrombocytopenic purpura (AITP), and common variable immunodeficiency (CVID) were diagnosed. The patient underwent low carb diet, losing > 8 kg, and was placed on Ig replacement therapy. Anti-CD20 monoclonal antibody (Rituximab, RTX) was administered 2 years after diagnosis to treat peripheral polyneuropathy, whereas an atypical mycobacteriosis manifested 4 years after diagnosis and was managed with prolonged antibiotic treatment. In the fifth year of monitoring, the patient progressed to insulin dependency despite ZnT8A autoantibody resolution and IA-2A and GADA autoantibody decline. The patient had low T1D genetic risk score (GRS = 0.22817) and absence of human leukocyte antigen (HLA) DR3/DR4-DQ8. Genetic analysis identified the monoallelic mutation H159Y in TNFRSF13C, a gene encoding B-cell activating factor receptor (BAFFR). Significant reduced blood B-cell numbers and BAFFR levels were observed in line with a dysregulation in BAFF-BAFFR signaling. The elevated frequency of PD-1+ dysfunctional Tfh cells composed predominantly by Th1 phenotype was observed at disease onset and during follow-up. This case report describes a patient progressing to T1D on a BAFFR-mediated immunodysregulatory background, suggesting a role of BAFF-BAFFR signaling in islet-specific tolerance and T1D progression.
Assuntos
Diabetes Mellitus Tipo 1 , Adolescente , Autoanticorpos , Fator Ativador de Células B/genética , Humanos , Insulina/genética , MutaçãoRESUMO
Deficiency of adenosine deaminase 2 (DADA2) is an autosomal recessive disease associated with a highly variable clinical presentation, including vasculitis, immunodeficiency, and hematologic manifestations, potentially progressing over time. The present study describes the long-term evolution of the immuno-hematological features and therapeutic challenge of two identical adult twin sisters affected by DADA2. The absence of plasmatic adenosine deaminase 2 (ADA2) activity in both twins suggested the diagnosis of DADA2, then confirmed by genetic analysis. Exon sequencing revealed a missense (p.Leu188Pro) mutation on the paternal ADA2 allele. While, whole genome sequencing identified an unreported deletion (IVS6_IVS7del*) on the maternal allele predicted to produce a transcript missing exon 7. The patients experienced the disease onset during childhood with early strokes (Patient 1 at two years, Patient 2 at eight years of age), subsequently followed by other shared DADA2-associated features, including neutropenia, hypogammaglobulinemia, reduced switched memory B cells, inverted CD4:CD8 ratio, increased naïve T cells, reduced follicular regulatory T cells, the almost complete absence of NK cells, T-large granular cell leukemia, and osteoporosis. Disease evolution differed: clinical manifestations presented several years earlier and were more pronounced in Patient 1 than in Patient 2. Due to G-CSF refractory life-threatening neutropenia, Patient 1 successfully underwent an urgent hematopoietic stem cell transplantation (HSCT) from a 9/10 matched unrelated donor. Patient 2 experienced a similar, although delayed, disease evolution and is currently on anti-TNF therapy and anti-infectious prophylaxis. The unique cases confirmed that heterozygous patients with null ADA2 activity deserve deep investigation for possible structural variants on a single allele. Moreover, this report emphasizes the importance of timely recognizing DADA2 at the onset to allow adequate follow-up and detection of disease progression. Finally, the therapeutic management in these identical twins raises significant concerns as they share a similar phenotype, with a delayed but almost predictable disease evolution in one of them, who could benefit from a prompt definitive treatment like elective allogeneic HSCT. Additional data are required to assess whether the absence of enzymatic activity at diagnosis is associated with hematological involvement and is also predictive of bone marrow dysfunction, encouraging early HSCT to improve functional outcomes.
Assuntos
Agamaglobulinemia , Neutropenia , Poliarterite Nodosa , Adenosina Desaminase/genética , Agamaglobulinemia/diagnóstico , Agamaglobulinemia/genética , Fator Estimulador de Colônias de Granulócitos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Imunodeficiência Combinada Severa , Inibidores do Fator de Necrose Tumoral , Gêmeos Monozigóticos/genéticaRESUMO
Terricolous lichen communities in lowlands occur especially in open dry habitats. Such communities are often dominated by species of the genus Cladonia, which are very variable in morphology, reproduction strategies, and secondary metabolites. In this work, we investigated traits-environment relationships considering vegetation dynamics, substrate pH, disturbance, and climate. A total of 122 plots were surveyed in 41 acidic dry grasslands in the western Po Plain (Northern Italy). Relationships between Cladonia traits and environmental variables were investigated by means of a model-based Fourth Corner Analysis. Thallus morphology and metabolites responded to vegetation dynamics, substrate pH, disturbance, and climate, whereas reproduction strategies responded only to vegetation dynamics. Traits' correlations with vegetation dynamics elucidate their colonization patterns in open dry habitats or suggest biotic interactions with bryophytes and vascular plants. In addition, correlations between metabolites and environmental factors support interpretations of their ecological roles. Our results also stress the importance of studying traits' relationships with climatic factors as an alert towards lichen reactions to climate change.
RESUMO
Although chemotherapeutic agents have been used for decades, the mechanisms of action, mechanisms of resistance, and the best treatment schedule remain elusive. Mitomycin C (MMC) is the gold standard treatment for non-muscle-invasive bladder cancer (NMIBC). However, it is effective only in a subset of patients, suggesting that, aside from cytotoxicity, other mechanisms could be involved in mediating the success of the treatment. Here, we showed that MMC promotes immunogenic cell death (ICD) and in vivo tumor protection. MMC-induced ICD relied on metabolic reprogramming of tumor cells toward increased oxidative phosphorylation. This favored increased mitochondrial permeability leading to the cytoplasmic release of mitochondrial DNA, which activated the inflammasome for efficient IL-1ß (interleukin-1ß) secretion that promoted dendritic cell maturation. Resistance to ICD was associated with mitochondrial dysfunction related to low abundance of complex I of the respiratory chain. Analysis of complex I in patient tumors indicated that low abundance of this mitochondrial complex was associated with recurrence incidence after chemotherapy in patients with NMIBC. The identification of mitochondria-mediated ICD as a mechanism of action of MMC offers opportunities to optimize bladder cancer management and provides potential markers of treatment efficacy that could be used for patient stratification.