Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 107(1): 118-135, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33866641

RESUMO

Transposable elements (TEs) are a rich source of genetic variability. Among TEs, miniature inverted-repeat TEs (MITEs) are of particular interest as they are present in high copy numbers in plant genomes and are closely associated with genes. MITEs are deletion derivatives of class II transposons, and can be mobilized by the transposases encoded by the latter through a typical cut-and-paste mechanism. However, MITEs are typically present at much higher copy numbers than class II transposons. We present here an analysis of 103 109 transposon insertion polymorphisms (TIPs) in 738 Oryza sativa genomes representing the main rice population groups. We show that an important fraction of MITE insertions has been fixed in rice concomitantly with its domestication. However, another fraction of MITE insertions is present at low frequencies. We performed MITE TIP-genome-wide association studies (TIP-GWAS) to study the impact of these elements on agronomically important traits and found that these elements uncover more trait associations than single nucleotide polymorphisms (SNPs) on important phenotypes such as grain width. Finally, using SNP-GWAS and TIP-GWAS we provide evidence of the replicative amplification of MITEs.


Assuntos
Elementos de DNA Transponíveis/genética , Sequências Repetidas Invertidas/genética , Oryza/genética , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Oryza/fisiologia , Fenótipo , Polimorfismo de Nucleotídeo Único
2.
Plant J ; 101(2): 455-472, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31529539

RESUMO

We sequenced the genome of the highly heterozygous almond Prunus dulcis cv. Texas combining short- and long-read sequencing. We obtained a genome assembly totaling 227.6 Mb of the estimated almond genome size of 238 Mb, of which 91% is anchored to eight pseudomolecules corresponding to its haploid chromosome complement, and annotated 27 969 protein-coding genes and 6747 non-coding transcripts. By phylogenomic comparison with the genomes of 16 additional close and distant species we estimated that almond and peach (Prunus persica) diverged around 5.88 million years ago. These two genomes are highly syntenic and show a high degree of sequence conservation (20 nucleotide substitutions per kb). However, they also exhibit a high number of presence/absence variants, many attributable to the movement of transposable elements (TEs). Transposable elements have generated an important number of presence/absence variants between almond and peach, and we show that the recent history of TE movement seems markedly different between them. Transposable elements may also be at the origin of important phenotypic differences between both species, and in particular for the sweet kernel phenotype, a key agronomic and domestication character for almond. Here we show that in sweet almond cultivars, highly methylated TE insertions surround a gene involved in the biosynthesis of amygdalin, whose reduced expression has been correlated with the sweet almond phenotype. Altogether, our results suggest a key role of TEs in the recent history and diversification of almond and its close relative peach.


Assuntos
Sequência de Bases , Elementos de DNA Transponíveis/genética , Genoma de Planta , Prunus dulcis/genética , Prunus persica/genética , Mapeamento Cromossômico , Metilação de DNA , Domesticação , Evolução Molecular , Genes de Plantas/genética , Filogenia , Sementes , Especificidade da Espécie
3.
Plant J ; 82(4): 621-31, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25823965

RESUMO

Long terminal repeat retrotransposons (LTR-RTs) represent a major fraction of plant genomes, but processes leading to transposition bursts remain elusive. Polyploidy expectedly leads to LTR-RT proliferation, as the merging of divergent diploids provokes a genome shock activating LTR-RTs and/or genetic redundancy supports the accumulation of active LTR-RTs through relaxation of selective constraints. Available evidence supports interspecific hybridization as the main trigger of genome dynamics, but few studies have addressed the consequences of intraspecific polyploidy (i.e. autopolyploidy), where the genome shock is expectedly minimized. The dynamics of LTR-RTs was thus here evaluated through low coverage 454 sequencing of three closely related diploid progenitors and three independent autotetraploids from the young Biscutella laevigata species complex. Genomes from this early diverging Brassicaceae lineage presented a minimum of 40% repeats and a large diversity of transposable elements. Differential abundances and patterns of sequence divergence among genomes for 37 LTR-RT families revealed contrasted dynamics during species diversification. Quiescent LTR-RT families with limited genetic variation among genomes were distinguished from active families (37.8%) having proliferated in specific taxa. Specific families proliferated in autopolyploids only, but most transpositionally active families in polyploids were also differentiated among diploids. Low expression levels of transpositionally active LTR-RT families in autopolyploids further supported that genome shock and redundancy are non-mutually exclusive triggers of LTR-RT proliferation. Although reputed stable, autopolyploid genomes show LTR-RT fractions presenting analogies with polyploids between widely divergent genomes.


Assuntos
Mostardeira/genética , Retroelementos/genética , Evolução Molecular , Genoma de Planta/genética , Dados de Sequência Molecular , Filogenia , Poliploidia , Sequências Repetidas Terminais/genética
4.
Plant Cell Physiol ; 56(10): 2035-51, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26355011

RESUMO

Polyploidy impacts the diversity of plant species, giving rise to novel phenotypes and leading to ecological diversification. In order to observe adaptive and evolutionary capacities of polyploids, we compared the growth, primary metabolism and transcriptomic expression level in the leaves of the newly formed allotetraploid Coffea arabica species compared with its two diploid parental species (Coffea eugenioides and Coffea canephora), exposed to four thermal regimes (TRs; 18-14, 23-19, 28-24 and 33-29°C). The growth rate of the allopolyploid C. arabica was similar to that of C. canephora under the hottest TR and that of C. eugenioides under the coldest TR. For metabolite contents measured at the hottest TR, the allopolyploid showed similar behavior to C. canephora, the parent which tolerates higher growth temperatures in the natural environment. However, at the coldest TR, the allopolyploid displayed higher sucrose, raffinose and ABA contents than those of its two parents and similar linolenic acid leaf composition and Chl content to those of C. eugenioides. At the gene expression level, few differences between the allopolyploid and its parents were observed for studied genes linked to photosynthesis, respiration and the circadian clock, whereas genes linked to redox activity showed a greater capacity of the allopolyploid for homeostasis. Finally, we found that the overall transcriptional response to TRs of the allopolyploid was more homeostatic compared with its parents. This better transcriptional homeostasis of the allopolyploid C. arabica afforded a greater phenotypic homeostasis when faced with environments that are unsuited to the diploid parental species.


Assuntos
Coffea/metabolismo , Coffea/genética , Diploide , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética
5.
Hortic Res ; 9: uhac127, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928404

RESUMO

Hybridization has been widely used in breeding of cultivated species showing low genetic variability, such as peach (Prunus persica). The merging of two different genomes in a hybrid often triggers a so-called "genomic shock" with changes in DNA methylation and in the induction of transposable element expression and mobilization. Here, we analysed the DNA methylation and transcription levels of transposable elements and genes in leaves of Prunus persica and Prunus dulcis and in an F1 hybrid using high-throughput sequencing technologies. Contrary to the "genomic shock" expectations, we found that the overall levels of DNA methylation in the transposable elements in the hybrid are not significantly altered compared with those of the parental genomes. We also observed that the levels of transcription of the transposable elements in the hybrid are in most cases intermediate as compared with that of the parental species and we have not detected cases of higher transcription in the hybrid. We also found that the proportion of genes whose expression is altered in the hybrid compared with the parental species is low. The expression of genes potentially involved in the regulation of the activity of the transposable elements is not altered. We can conclude that the merging of the two parental genomes in this Prunus persica x Prunus dulcis hybrid does not result in a "genomic shock" with significant changes in the DNA methylation or in the transcription. The absence of major changes may facilitate using interspecific peach x almond crosses for peach improvement.

6.
BMC Genomics ; 12: 5, 2011 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-21208403

RESUMO

BACKGROUND: Understanding the genetic elements that contribute to key aspects of coffee biology will have an impact on future agronomical improvements for this economically important tree. During the past years, EST collections were generated in Coffee, opening the possibility to create new tools for functional genomics. RESULTS: The "PUCE CAFE" Project, organized by the scientific consortium NESTLE/IRD/CIRAD, has developed an oligo-based microarray using 15,721 unigenes derived from published coffee EST sequences mostly obtained from different stages of fruit development and leaves in Coffea Canephora (Robusta). Hybridizations for two independent experiments served to compare global gene expression profiles in three types of tissue matter (mature beans, leaves and flowers) in C. canephora as well as in the leaves of three different coffee species (C. canephora, C. eugenoides and C. arabica). Microarray construction, statistical analyses and validation by Q-PCR analysis are presented in this study. CONCLUSION: We have generated the first 15 K coffee array during this PUCE CAFE project, granted by Génoplante (the French consortium for plant genomics). This new tool will help study functional genomics in a wide range of experiments on various plant tissues, such as analyzing bean maturation or resistance to pathogens or drought. Furthermore, the use of this array has proven to be valid in different coffee species (diploid or tetraploid), drastically enlarging its impact for high-throughput gene expression in the community of coffee research.


Assuntos
Agricultura/métodos , Café/genética , Genômica/métodos , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase
7.
New Phytol ; 192(3): 760-74, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21797880

RESUMO

• Polyploidy occurs throughout the evolutionary history of many plants and considerably impacts species diversity, giving rise to novel phenotypes and leading to ecological diversification and colonization of new niches. Recent studies have documented dynamic changes in plant polyploid gene expression, which reflect the genomic and functional plasticity of duplicate genes and genomes. • The aim of the present study was to describe genomic expression dominance between a relatively recently formed natural allopolyploid (Coffea arabica) and its ancestral parents (Coffea canephora and Coffea eugenioides) and to determine if the divergence was environment-dependent. Employing a microarray platform designed against 15,522 unigenes, we assayed unigene expression levels in the allopolyploid and its two parental diploids. For each unigene, we measured expression variations among the three species grown under two temperature conditions (26-22°C (day-night temperatures) and 30-26°C (day-night temperatures)). • More than 35% of unigenes were differentially expressed in each comparison at both temperatures, except for C. arabica vs C. canephora in the 30-26°C range, where an unexpectedly low unigene expression divergence (< 9%) was observed. • Our data revealed evidence of transcription profile divergence between the allopolyploid and its parental species, greatly affected by environmental conditions, and provide clues to the plasticity phenomenon in allopolyploids.


Assuntos
Coffea/crescimento & desenvolvimento , Coffea/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Poliploidia , Temperatura , Coffea/fisiologia , Diploide , Fluorescência , Perfilação da Expressão Gênica , Redes e Vias Metabólicas/genética , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade da Espécie , Transcriptoma/genética
8.
Microb Ecol ; 61(4): 793-810, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21318282

RESUMO

Acid mine drainage of the Carnoulès mine (France) is characterized by acid waters containing high concentrations of arsenic and iron. In the first 30 m along the Reigous, a small creek draining the site, more than 38% of the dissolved arsenic was removed by co-precipitation with Fe(III), in agreement with previous studies, which suggest a role of microbial activities in the co-precipitation of As(III) and As(V) with Fe(III) and sulfate. To investigate how this particular ecosystem functions, the bacterial community was characterized in water and sediments by 16S rRNA encoding gene library analysis. Based on the results obtained using a metaproteomic approach on sediments combined with high-sensitivity HPLC-chip spectrometry, several GroEL orthologs expressed by the community were characterized, and the active members of the prokaryotic community inhabiting the creek sediments were identified. Many of these bacteria are ß-proteobacteria such as Gallionella and Thiomonas, but γ-proteobacteria such as Acidithiobacillus ferrooxidans and α-proteobacteria such as Acidiphilium, Actinobacteria, and Firmicutes were also detected.


Assuntos
Arsênio/metabolismo , Bactérias/isolamento & purificação , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Arsênio/análise , Bactérias/classificação , Bactérias/genética , Biodegradação Ambiental , Sedimentos Geológicos/química , Dados de Sequência Molecular , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA