Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(8): 3967-3973, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32041888

RESUMO

Because few ice core records from the Himalayas exist, understanding of the onset and timing of the human impact on the atmosphere of the "roof of the world" remains poorly constrained. We report a continuous 500-y trace metal ice core record from the Dasuopu glacier (7,200 m, central Himalayas), the highest drilling site on Earth. We show that an early contamination from toxic trace metals, particularly Cd, Cr, Mo, Ni, Sb, and Zn, emerged at high elevation in the Himalayas at the onset of the European Industrial Revolution (∼1780 AD). This was amplified by the intensification of the snow accumulation (+50% at Dasuopu) likely linked to the meridional displacement of the winter westerlies from 1810 until 1880 AD. During this period, the flux and crustal enrichment factors of the toxic trace metals were augmented by factors of 2 to 4 and 2 to 6, respectively. We suggest this contamination was the consequence of the long-range transport and wet deposition of fly ash from the combustion of coal (likely from Western Europe where it was almost entirely produced and used during the 19th century) with a possible contribution from the synchronous increase in biomass burning emissions from deforestation in the Northern Hemisphere. The snow accumulation decreased and dry winters were reestablished in Dasuopu after 1880 AD when lower than expected toxic metal levels were recorded. This indicates that contamination on the top of the Himalayas depended primarily on multidecadal changes in atmospheric circulation and secondarily on variations in emission sources during the last 200 y.


Assuntos
Poluentes Atmosféricos/química , Altitude , Monitoramento Ambiental , Indústrias/história , Europa (Continente) , História do Século XIX , História do Século XX , História do Século XXI , Humanos
2.
Proc Natl Acad Sci U S A ; 117(50): 31648-31659, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33229559

RESUMO

Trace elements sustain biological productivity, yet the significance of trace element mobilization and export in subglacial runoff from ice sheets is poorly constrained at present. Here, we present size-fractionated (0.02, 0.22, and 0.45 µm) concentrations of trace elements in subglacial waters from the Greenland Ice Sheet (GrIS) and the Antarctic Ice Sheet (AIS). Concentrations of immobile trace elements (e.g., Al, Fe, Ti) far exceed global riverine and open ocean mean values and highlight the importance of subglacial aluminosilicate mineral weathering and lack of retention of these species in sediments. Concentrations are higher from the AIS than the GrIS, highlighting the geochemical consequences of prolonged water residence times and hydrological isolation that characterize the former. The enrichment of trace elements (e.g., Co, Fe, Mn, and Zn) in subglacial meltwaters compared with seawater and typical riverine systems, together with the likely sensitivity to future ice sheet melting, suggests that their export in glacial runoff is likely to be important for biological productivity. For example, our dissolved Fe concentration (20,900 nM) and associated flux values (1.4 Gmol y-1) from AIS to the Fe-deplete Southern Ocean exceed most previous estimates by an order of magnitude. The ultimate fate of these micronutrients will depend on the reactivity of the dominant colloidal size fraction (likely controlled by nanoparticulate Al and Fe oxyhydroxide minerals) and estuarine processing. We contend that ice sheets create highly geochemically reactive particulates in subglacial environments, which play a key role in trace elemental cycles, with potentially important consequences for global carbon cycling.


Assuntos
Ciclo do Carbono , Planeta Terra , Camada de Gelo/química , Micronutrientes/metabolismo , Oligoelementos/metabolismo , Regiões Antárticas , Groenlândia , Micronutrientes/análise , Oligoelementos/análise
3.
Glob Chang Biol ; 22(3): 1185-200, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26279166

RESUMO

High Arctic landscapes are expansive and changing rapidly. However, our understanding of their functional responses and potential to mitigate or enhance anthropogenic climate change is limited by few measurements. We collected eddy covariance measurements to quantify the net ecosystem exchange (NEE) of CO2 with polar semidesert and meadow wetland landscapes at the highest latitude location measured to date (82°N). We coupled these rare data with ground and satellite vegetation production measurements (Normalized Difference Vegetation Index; NDVI) to evaluate the effectiveness of upscaling local to regional NEE. During the growing season, the dry polar semidesert landscape was a near-zero sink of atmospheric CO2 (NEE: -0.3 ± 13.5 g C m(-2) ). A nearby meadow wetland accumulated over 300 times more carbon (NEE: -79.3 ± 20.0 g C m(-2) ) than the polar semidesert landscape, and was similar to meadow wetland NEE at much more southerly latitudes. Polar semidesert NEE was most influenced by moisture, with wetter surface soils resulting in greater soil respiration and CO2 emissions. At the meadow wetland, soil heating enhanced plant growth, which in turn increased CO2 uptake. Our upscaling assessment found that polar semidesert NDVI measured on-site was low (mean: 0.120-0.157) and similar to satellite measurements (mean: 0.155-0.163). However, weak plant growth resulted in poor satellite NDVI-NEE relationships and created challenges for remotely detecting changes in the cycling of carbon on the polar semidesert landscape. The meadow wetland appeared more suitable to assess plant production and NEE via remote sensing; however, high Arctic wetland extent is constrained by topography to small areas that may be difficult to resolve with large satellite pixels. We predict that until summer precipitation and humidity increases enough to offset poor soil moisture retention, climate-related changes to productivity on polar semideserts may be restricted.


Assuntos
Ciclo do Carbono , Dióxido de Carbono/análise , Mudança Climática , Ecossistema , Regiões Árticas , Nunavut , Estações do Ano
4.
Creat Nurs ; 19(1): 6-11, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23600020

RESUMO

Successful preparation for the future requires strategic exploration--"what you do before you plan." Scouting the future involves quickness, sampling rather than exhaustive examination, and qualitative information that will enhance leaders' decision making. Strategic exploration requires skills in monitoring trends, innovations, and paradigm shifts (TIPS); examining the long-term implications of those elements; examining the impact of specific changes; and creating visions based on what we have learned.


Assuntos
Invenções/tendências , Modelos de Enfermagem , Cuidados de Enfermagem/tendências , Informática em Enfermagem/tendências , Serviços de Enfermagem/tendências , Humanos
5.
ISME Commun ; 3(1): 8, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717625

RESUMO

Ice streams that flow into Ross Ice Shelf are underlain by water-saturated sediments, a dynamic hydrological system, and subglacial lakes that intermittently discharge water downstream across grounding zones of West Antarctic Ice Sheet (WAIS). A 2.06 m composite sediment profile was recently recovered from Mercer Subglacial Lake, a 15 m deep water cavity beneath a 1087 m thick portion of the Mercer Ice Stream. We examined microbial abundances, used 16S rRNA gene amplicon sequencing to assess community structures, and characterized extracellular polymeric substances (EPS) associated with distinct lithologic units in the sediments. Bacterial and archaeal communities in the surficial sediments are more abundant and diverse, with significantly different compositions from those found deeper in the sediment column. The most abundant taxa are related to chemolithoautotrophs capable of oxidizing reduced nitrogen, sulfur, and iron compounds with oxygen, nitrate, or iron. Concentrations of dissolved methane and total organic carbon together with water content in the sediments are the strongest predictors of taxon and community composition. δ¹³C values for EPS (-25 to -30‰) are consistent with the primary source of carbon for biosynthesis originating from legacy marine organic matter. Comparison of communities to those in lake sediments under an adjacent ice stream (Whillans Subglacial Lake) and near its grounding zone provide seminal evidence for a subglacial metacommunity that is biogeochemically and evolutionarily linked through ice sheet dynamics and the transport of microbes, water, and sediments beneath WAIS.

6.
Environ Sci Technol ; 46(19): 10514-22, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22779785

RESUMO

The sources of methylmercury (MeHg; the toxic form of mercury that is biomagnified through foodwebs) to Arctic freshwater organisms have not been clearly identified. We used a mass balance approach to quantify MeHg production in two wetland ponds in the Lake Hazen region of northern Ellesmere Island, NU, in the Canadian High Arctic and to evaluate the importance of these systems as sources of MeHg to Arctic foodwebs. We show that internal production (1.8-40 ng MeHg m(-2) d(-1)) is a much larger source of MeHg than external inputs from direct atmospheric deposition (0.029-0.051 ng MeHg m(-2) d(-1)), as expected. Furthermore, MeHg cycling in these systems is dominated by Hg(II) methylation and MeHg photodemethylation (2.0-33 ng MeHg m(-2) d(-1)), which is a sink for a large proportion of the MeHg produced by Hg(II) methylation in these ponds. We also show that MeHg production in the two study ponds is comparable to what has previously been measured in numerous more southerly systems known to be important MeHg sources, such as temperate wetlands and lakes, demonstrating that wetland ponds in the High Arctic are important sources of MeHg to local aquatic foodwebs.


Assuntos
Compostos de Metilmercúrio/metabolismo , Lagoas , Poluentes Químicos da Água/metabolismo , Áreas Alagadas , Animais , Regiões Árticas , Atmosfera , Daphnia/metabolismo , Ecossistema , Monitoramento Ambiental , Compostos de Metilmercúrio/análise , Nunavut , Poluentes Químicos da Água/análise , Zooplâncton/química
7.
Environ Sci Technol ; 46(15): 7971-7, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22779925

RESUMO

Tundra ecosystems store vast amounts of soil organic carbon, which may be sensitive to climatic change. Net ecosystem production, NEP, is the net exchange of carbon dioxide (CO(2)) between landscapes and the atmosphere, and represents the balance between CO(2) uptake by photosynthesis and release by decomposition and autotrophic respiration. Here we examine CO(2) exchange across seven sites in the Canadian low and high Arctic during the peak growing season (July) in summer 2008. All sites were net sinks for atmospheric CO(2) (NEP ranged from 5 to 67 g C m(-2)), with low Arctic sites being substantially larger CO(2) sinks. The spatial difference in NEP between low and high Arctic sites was determined more by CO(2) uptake via gross ecosystem production than by CO(2) release via ecosystem respiration. Maximum gross ecosystem production at the low Arctic sites (average 8.6 µmol m(-2) s(-1)) was about 4 times larger than for high Arctic sites (average 2.4 µmol m(-2) s(-1)). NEP decreased with increasing temperature at all low Arctic sites, driven largely by the ecosystem respiration response. No consistent temperature response was found for the high Arctic sites. The results of this study clearly indicate there are large differences in tundra CO(2) exchange between high and low Arctic environments and this difference should be a central consideration in studies of Arctic carbon balance and climate change.


Assuntos
Ecossistema , Estações do Ano , Regiões Árticas , Canadá , Dióxido de Carbono/análise , Temperatura
8.
Toxicon ; 197: 33-39, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33872677

RESUMO

Cyanobacterial blooms present a threat to many waterbodies around the world used for drinking water and recreational purposes. Toxicology tests, such as the Thamnotoxkit-F which uses the cladoceran T. platyurus, have been employed to assess the health hazards that these blooms may pose to the public. However, reported median lethal concentrations (LC50) of microcystin -LR to T. platyurus vary significantly from one study to the next. The variation in solvent type and concentrations used to dissolve microcystin -LR in preparation for toxicity experiments may be contributing to the variations in LC50 values found in the literature. The primary goal of this study was to determine what solvents and their corresponding concentrations can be used for microcystin -LR testing using T. platyurus without artifactually impacting LC50 values. All toxicity testing was completed using glassware as polystyrene containers have been shown to sorb microcystin. Microcystin -LR LC50 values for T. platyurus were determined using United States Environmental Protection Agency (US EPA) moderately hard standard freshwater as a control for comparison with systems that were prepared using dimethyl sulfoxide or methanol to dissolve microcystin -LR. Low levels of dimethyl sulfoxide (2%) or methanol (1%) did not impact LC50 values of microcystin -LR to T. platyurus compared to US EPA moderately hard standard freshwater diluted in microcystin -LR. However, higher levels of dimethyl sulfoxide (4%) and methanol (1.4% and 4%) did lower the LC50 for microcystin -LR to T. platyurus, consistent with the toxicity of these solvents to T. platyurus when dosed in the absence of microcystin -LR. Researchers need to report the type and concentrations of solvents used in toxicity tests using cyanotoxins in order to ensure that results can be intercompared appropriately. Furthermore, researchers need to use caution when using organic solvents such as dimethyl sulfoxide or methanol to ensure that these solvents are not causing significant mortality in toxicity testing.


Assuntos
Cianobactérias , Microcistinas , Bioensaio , Dose Letal Mediana , Microcistinas/toxicidade , Solventes
9.
Sci Total Environ ; 699: 134003, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31522052

RESUMO

Due to the increase in severe cyanobacterial blooms in drinking water sources and recreational waters across the globe, inexpensive and reliable methods of detecting oncoming blooms are needed. Cyanobacterial blooms can contribute substantially to the bulk chromophoric dissolved organic matter pool. Thus, the fluorescence signature of organic matter derived from these blooms may be an indicator of upcoming blooms. Water samples from five sites around Ohio were collected regularly between February and October 2017. A PARAFAC model was developed to determine if these protein-like fluorophores could be linked to bloom biomass and whether they were absent in dissolved organic matter from oligotrophic waters. One reference site at an oligotrophic reservoir was included to confirm the lack of protein-like fluorophores in the absence of a bloom event. We found that an increase in tryptophan-like and tyrosine-like fluorophores occurs before the increase in chlorophyll a levels, associated with bloom biomass, in some Ohio waters affected by cyanobacterial blooms; however, protein-like fluorophores are not correlated with levels of the cyanotoxin, microcystin. The excitation and emission wavelengths of these fluorophores (tryptophan-like: 239/341 nm, tyrosine-like: 248/306 nm) may be used to monitor impending blooms in waters heavily impacted by cyanobacteria but may not be applicable to waters receiving treated wastewater discharges.


Assuntos
Monitoramento Ambiental , Corantes Fluorescentes/análise , Poluentes da Água/análise , Clorofila A , Eutrofização , Ohio
10.
Environ Sci Technol ; 41(18): 6433-41, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17948790

RESUMO

We sampled seawater and snowpacks in the Canadian high Arctic for methylated species of mercury (Hg). We discovered that, although seawater sampled under the sea ice had very low concentrations of total Hg (THg, all forms of Hg in a sample; on average 0.14-0.24 ng L(-1)), 30-45% of the THg was in the monomethyl Hg (MMHg) form (on average 0.057-0.095 ng L(-1)), making seawater itself a direct source of MMHg for biomagnification through marine food webs. Seawater under the ice also contained high concentrations of gaseous elemental Hg (GEM; 129 +/- 36 pg L(-1)), suggesting that open water regions such as polynyas and ice leads were a net source of approximately 130 +/- 30 ng Hg m(-2) day(-1) to the atmosphere. We also found 11.1 +/- 4.1 pg L(-1) of dimethyl Hg (DMHg) in seawater and calculated that there could be a significant flux of DMHg to the atmosphere from open water regions. This flux could then resultin MMHg deposition into nearby snowpacks via oxidation of DMHg to MMHg in the atmosphere. In fact, we found high concentrations of MMHg in a few snowpacks near regions of open water. Interestingly, we discovered a significant log-log relationship between Cl- concentrations in snowpacks and concentrations of THg. We hypothesize that as Cl- concentrations in snowpacks increase, inorganic Hg(II) occurs principally as less reducible chloro complexes and, hence, remains in an oxidized state. As a result, snowpacks that receive both marine aerosol deposition of Cl- and deposition of Hg(II) via springtime atmospheric Hg depletion events, for example, may contain significant loads of Hg(II). Overall, though, the median wet/dry loads of Hg in the snowpacks we sampled in the high Arctic (5.2 mg THg ha(-1) and 0.03 mg MMHg ha(-1)) were far below wet-only annual THg loadings throughout southern Canada and most of the U.S. (22-200 mg ha(-1)). Therefore, most Arctic snowpacks contribute


Assuntos
Compostos de Metilmercúrio/análise , Água do Mar/análise , Neve/química , Regiões Árticas , Canadá , Monitoramento Ambiental/métodos , Geografia , Compostos de Metilmercúrio/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
11.
Science ; 317(5834): 111-4, 2007 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-17615355

RESUMO

It is difficult to obtain fossil data from the 10% of Earth's terrestrial surface that is covered by thick glaciers and ice sheets, and hence, knowledge of the paleoenvironments of these regions has remained limited. We show that DNA and amino acids from buried organisms can be recovered from the basal sections of deep ice cores, enabling reconstructions of past flora and fauna. We show that high-altitude southern Greenland, currently lying below more than 2 kilometers of ice, was inhabited by a diverse array of conifer trees and insects within the past million years. The results provide direct evidence in support of a forested southern Greenland and suggest that many deep ice cores may contain genetic records of paleoenvironments in their basal sections.


Assuntos
Aminoácidos/análise , DNA/análise , Ecossistema , Camada de Gelo/química , Invertebrados , Plantas , Árvores , Aminoácidos/história , Aminoácidos/isolamento & purificação , Animais , Teorema de Bayes , Clima , DNA/história , DNA/isolamento & purificação , Fósseis , Geografia , Groenlândia , História Antiga , Invertebrados/classificação , Invertebrados/genética , Plantas/classificação , Plantas/genética , Reação em Cadeia da Polimerase , Tempo
12.
Environ Sci Technol ; 39(8): 2686-701, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15884366

RESUMO

We identified some of the sources and sinks of monomethyl mercury (MMHg) and inorganic mercury (HgII) on Ellesmere Island in the Canadian High Arctic. Atmospheric Hg depletion events resulted in the deposition of Hg(II) into the upper layers of snowpacks, where concentrations of total Hg (all forms of Hg) reached over 20 ng/L. However, our data suggest that much of this deposited Hg(II) was rapidly photoreduced to Hg(0) which then evaded back to the atmosphere. As a result, we estimate that net wet and dry deposition of Hg(II) during winter was lower at our sites (0.4-5.9 mg/ha) than wet deposition in more southerly locations in Canada and the United States. We also found quite high concentrations of monomethyl Hg (MMHg) in snowpacks (up to 0.28 ng/L), and at times, most of the Hg in snowpacks was present as MMHg. On the Prince of Wales Icefield nearthe North Water Polynya, we observed a significant correlation between concentrations of Cl and MMHg in snow deposited in the spring, suggesting a marine source of MMHg. We hypothesize that dimethyl Hg fluxes from the ocean to the atmosphere through polynyas and open leads in ice, and is rapidly photolyzed to MMHgCl. We also found that concentrations of MMHg in initial snowmelt on John Evans Glacier (up to 0.24 ng/L) were higher than concentrations of MMHg in the snowpack (up to 0.11 ng/L), likely due to either sublimation of snow or preferential leaching of MMHg from snow during the initial melt phase. This springtime pulse of MMHg to the High Arctic, in conjunction with climate warming and the thinning and melting of sea ice, may be partially responsible for the increase in concentrations of Hg observed in certain Arctic marine mammals in recent decades. Concentrations of MMHg in warm and shallow freshwater ponds on Ellesmere Island were also quite high (up to 3.0 ng/L), leading us to conclude that there are very active regions of microbial Hg(II) methylation in freshwater systems during the short summer season in the High Arctic.


Assuntos
Poluentes Atmosféricos/análise , Mercúrio/análise , Compostos de Metilmercúrio/análise , Neve/química , Poluentes Atmosféricos/química , Regiões Árticas , Canadá , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Mercúrio/química , Fotoquímica , Estudos de Amostragem , Estações do Ano , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA