Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Virol ; 98(2): e0174223, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38193694

RESUMO

The HIV-1 Envelope (Env) protein cytoplasmic tail (CT) recently has been shown to assemble an unusual trimeric baseplate structure that locates beneath Env ectodomain trimers. Mutations at linchpin residues that help organize the baseplate impair virus replication in restrictive T cell lines but not in permissive cell lines. We have identified and characterized a second site suppressor of these baseplate mutations, located at residue 34 in the viral matrix (MA) protein, that rescues viral replication in restrictive cells. The suppressor mutation was dependent on the CT to exert its activity and did not appear to affect Env protein traffic or fusion functions in restrictive cells. Instead, the suppressor mutation increased Env incorporation into virions 3-fold and virus infectivity in single-round infections 10-fold. We also found that a previously described suppressor of Env-incorporation defects that stabilizes the formation of MA trimers was ineffective at rescuing Env baseplate mutations. Our results support an interpretation in which changes at MA residue 34 induce conformational changes that stabilize MA lattice trimer-trimer interactions and/or direct MA-CT associations.IMPORTANCEHow HIV-1 Env trimers assemble into virus particles remains incompletely understood. In restrictive cells, viral incorporation of Env is dependent on the Env CT and on the MA protein, which assembles lattices composed of hexamers of trimers in immature and mature viruses. Recent evidence indicates that CT assembles trimeric baseplate structures that require membrane-proximal residues to interface with trimeric transmembrane domains and C-terminal helices in the CT. We found that mutations of these membrane-proximal residues impaired replication in restrictive cells. This defect was countered by a MA mutation that does not localize to any obvious interprotein regions but was only inefficiently suppressed by a MA mutation that stabilizes MA trimers and has been shown to suppress other CT-dependent Env defects. Our results suggest that efficient suppression of baseplate mutations involves stabilization of MA inter-trimer contacts and/or direct MA-CT associations. These observations shed new light on how Env assembles into virions.


Assuntos
Produtos do Gene env , HIV-1 , Produtos do Gene env do Vírus da Imunodeficiência Humana , Antígenos Virais/genética , Linhagem Celular , Produtos do Gene env/química , Produtos do Gene env/genética , HIV-1/fisiologia , Mutação , Domínios Proteicos , Proteínas da Matriz Viral/metabolismo , Replicação Viral/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
2.
J Biol Chem ; 296: 100340, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33515546

RESUMO

The lipid composition of HIV-1 virions is enriched in sphingomyelin (SM), but the roles that SM or other sphingolipids (SLs) might play in the HIV-1 replication pathway have not been elucidated. In human cells, SL levels are regulated by ceramide synthase (CerS) enzymes that produce ceramides, which can be converted to SMs, hexosylceramides, and other SLs. In many cell types, CerS2, which catalyzes the synthesis of very long chain ceramides, is the major CerS. We have examined how CerS2 deficiency affects the assembly and infectivity of HIV-1. As expected, we observed that very long chain ceramide, hexosylceramide, and SM were reduced in CerS2 knockout cells. CerS2 deficiency did not affect HIV-1 assembly or the incorporation of the HIV-1 envelope (Env) protein into virus particles, but it reduced the infectivites of viruses produced in the CerS2-deficient cells. The reduced viral infection levels were dependent on HIV-1 Env, since HIV-1 particles that were pseudotyped with the vesicular stomatitis virus glycoprotein did not exhibit reductions in infectivity. Moreover, cell-cell fusion assays demonstrated that the functional defect of HIV-1 Env in CerS2-deficient cells was independent of other viral proteins. Overall, our results indicate that the altered lipid composition of CerS2-deficient cells specifically inhibit the HIV-1 Env receptor binding and/or fusion processes.


Assuntos
Deleção de Genes , Infecções por HIV/genética , HIV-1/fisiologia , Proteínas de Membrana/genética , Esfingosina N-Aciltransferase/genética , Proteínas Supressoras de Tumor/genética , Ceramidas/genética , Ceramidas/metabolismo , Células HEK293 , Infecções por HIV/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Esfingosina N-Aciltransferase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Internalização do Vírus
3.
J Virol ; 93(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31375589

RESUMO

The matrix (MA) domains of HIV-1 precursor Gag (PrGag) proteins direct PrGag proteins to plasma membrane (PM) assembly sites where envelope (Env) protein trimers are incorporated into virus particles. MA targeting to PM sites is facilitated by its binding to phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2], and MA binding to cellular RNAs appears to serve a chaperone function that prevents MA from associating with intracellular membranes prior to arrival at the PI(4,5)P2-rich PM. Investigations have shown genetic evidence of an interaction between MA and the cytoplasmic tails (CTs) of Env trimers that contributes to Env incorporation into virions, but demonstrations of direct MA-CT interactions have proven more difficult. In direct binding assays, we show here that MA binds to Env CTs. Using MA mutants, matrix-capsid (MACA) proteins, and MA proteins incubated in the presence of inositol polyphosphate, we show a correlation between MA trimerization and CT binding. RNA ligands with high affinities for MA reduced MA-CT binding levels, suggesting that MA-RNA binding interferes with trimerization and/or directly or indirectly blocks MA-CT binding. Rough-mapping studies indicate that C-terminal CT helices are involved in MA binding and are in agreement with cell culture studies with replication-competent viruses. Our results support a model in which full-length HIV-1 Env trimers are captured in assembling PrGag lattices by virtue of their binding to MA trimers.IMPORTANCE The mechanism by which HIV-1 envelope (Env) protein trimers assemble into virus particles is poorly understood but involves an interaction between Env cytoplasmic tails (CTs) and the matrix (MA) domain of the structural precursor Gag (PrGag) proteins. We show here that direct binding of MA to Env CTs correlates with MA trimerization, suggesting models where MA lattices regulate CT interactions and/or MA-CT trimer-trimer associations increase the avidity of MA-CT binding. We also show that MA binding to RNA ligands impairs MA-CT binding, potentially by interfering with MA trimerization and/or directly or allosterically blocking MA-CT binding sites. Rough mapping implicated CT C-terminal helices in MA binding, in agreement with cell culture studies on MA-CT interactions. Our results indicate that targeting HIV-1 MA-CT interactions may be a promising avenue for antiviral therapy.


Assuntos
Membrana Celular/metabolismo , Citosol/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas da Matriz Viral/metabolismo , Vírion/fisiologia , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Sítios de Ligação , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
4.
J Virol ; 94(1)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31619553

RESUMO

The matrix (MA) domain of HIV-1 Gag plays key roles in virus assembly by targeting the Gag precursor to the plasma membrane and directing the incorporation of the viral envelope (Env) glycoprotein into virions. The latter function appears to be in part dependent on trimerization of the MA domain of Gag during assembly, as disruption of the MA trimer interface impairs Env incorporation. Conversely, many MA mutations that impair Env incorporation can be rescued by compensatory mutations in the trimer interface. In this study, we sought to investigate further the biological significance of MA trimerization by isolating and characterizing compensatory mutations that rescue MA trimer interface mutants with severely impaired Env incorporation. By serially propagating MA trimerization-defective mutants in T cell lines, we identified a number of changes in MA, both within and distant from the trimer interface. The compensatory mutations located within or near the trimer interface restored Env incorporation and particle infectivity and permitted replication in culture. The structure of the MA lattice was interrogated by measuring the cleavage of the murine leukemia virus (MLV) transmembrane Env protein by the viral protease in MLV Env-pseudotyped HIV-1 particles bearing the MA mutations and by performing crystallographic studies of in vitro-assembled MA lattices. These results demonstrate that rescue is associated with structural alterations in MA organization and rescue of MA domain trimer formation. Our data highlight the significance of the trimer interface of the MA domain of Gag as a critical site of protein-protein interaction during HIV-1 assembly and establish the functional importance of trimeric MA for Env incorporation.IMPORTANCE The immature Gag lattice is a critical structural feature of assembling HIV-1 particles, which is primarily important for virion formation and release. While Gag forms a hexameric lattice, driven primarily by the capsid domain, the MA domain additionally trimerizes where three Gag hexamers meet. MA mutants that are defective for trimerization are deficient for Env incorporation and replication, suggesting a requirement for trimerization of the MA domain of Gag in Env incorporation. This study used a gain-of-function, forced viral evolution approach to rescue HIV-1 mutants that are defective for MA trimerization. Compensatory mutations that rescue virus replication do so by restoring Env incorporation and MA trimer formation. This study supports the importance of MA domain trimerization in HIV-1 replication and the potential of the trimer interface as a therapeutic target.


Assuntos
HIV-1/genética , Proteínas da Matriz Viral/química , Vírion/genética , Montagem de Vírus , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular , Expressão Gênica , HIV-1/metabolismo , Células HeLa , Humanos , Vírus da Leucemia Murina/genética , Vírus da Leucemia Murina/metabolismo , Camundongos , Modelos Moleculares , Mutação , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Linfócitos T/virologia , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Vírion/metabolismo , Replicação Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
5.
J Virol ; 90(12): 5657-5664, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27030269

RESUMO

UNLABELLED: The HIV-1 matrix (MA) protein is the amino-terminal domain of the HIV-1 precursor Gag (Pr55Gag) protein. MA binds to membranes and RNAs, helps transport Pr55Gag proteins to virus assembly sites at the plasma membranes of infected cells, and facilitates the incorporation of HIV-1 envelope (Env) proteins into virions by virtue of an interaction with the Env protein cytoplasmic tails (CTs). MA has been shown to crystallize as a trimer and to organize on membranes in hexamer lattices. MA mutations that localize to residues near the ends of trimer spokes have been observed to impair Env protein assembly into virus particles, and several of these are suppressed by the 62QR mutation at the hubs of trimer interfaces. We have examined the binding activities of wild-type (WT) MA and 62QR MA variants and found that the 62QR mutation stabilized MA trimers but did not alter the way MA proteins organized on membranes. Relative to WT MA, the 62QR protein showed small effects on membrane and RNA binding. However, 62QR proteins bound significantly better to Env CTs than their WT counterparts, and CT binding efficiencies correlated with trimerization efficiencies. Our data suggest a model in which multivalent binding of trimeric HIV-1 Env proteins to MA trimers contributes to the process of Env virion incorporation. IMPORTANCE: The HIV-1 Env proteins assemble as trimers, and incorporation of the proteins into virus particles requires an interaction of Env CT domains with the MA domains of the viral precursor Gag proteins. Despite this knowledge, little is known about the mechanisms by which MA facilitates the virion incorporation of Env proteins. To help elucidate this process, we examined the binding activities of an MA mutant that stabilizes MA trimers. We found that the mutant proteins organized similarly to WT proteins on membranes, and that mutant and WT proteins revealed only slight differences in their binding to RNAs or lipids. However, the mutant proteins showed better binding to Env CTs than the WT proteins, and CT binding correlated with MA trimerization. Our results suggest that multivalent binding of trimeric HIV-1 Env proteins to MA trimers contributes to the process of Env virion incorporation.


Assuntos
Antígenos HIV/química , Antígenos HIV/metabolismo , HIV-1/metabolismo , Mutação , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Linhagem Celular , Antígenos HIV/genética , HIV-1/genética , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , RNA/metabolismo , Vírion/metabolismo , Replicação Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
6.
J Virol ; 89(7): 3988-4001, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25631074

RESUMO

UNLABELLED: We have examined the interactions of wild-type (WT) and matrix protein-deleted (ΔMA) HIV-1 precursor Gag (PrGag) proteins in virus-producing cells using a biotin ligase-tagging approach. To do so, WT and ΔMA PrGag proteins were tagged with the Escherichia coli promiscuous biotin ligase (BirA*), expressed in cells, and examined. Localization patterns of PrGag proteins and biotinylated proteins overlapped, consistent with observations that BirA*-tagged proteins biotinylate neighbor proteins that are in close proximity. Results indicate that BirA*-tagged PrGag proteins biotinylated themselves as well as WT PrGag proteins in trans. Previous data have shown that the HIV-1 Envelope (Env) protein requires an interaction with MA for assembly into virions. Unexpectedly, ΔMA proteins biotinylated Env, whereas WT BirA*-tagged proteins did not, suggesting that the presence of MA made Env inaccessible to biotinylation. We also identified over 50 cellular proteins that were biotinylated by BirA*-tagged PrGag proteins. These included membrane proteins, cytoskeleton-associated proteins, nuclear transport factors, lipid metabolism regulators, translation factors, and RNA-processing proteins. The identification of these biotinylated proteins offers new insights into HIV-1 Gag protein trafficking and activities and provides new potential targets for antiviral interference. IMPORTANCE: We have employed a novel strategy to analyze the interactions of the HIV-1 structural Gag proteins, which involved tagging wild-type and mutant Gag proteins with a biotin ligase. Expression of the tagged proteins in cells allowed us to analyze proteins that came in close proximity to the Gag proteins as they were synthesized, transported, assembled, and released from cells. The tagged proteins biotinylated proteins encoded by the HIV-1 pol gene and neighbor Gag proteins, but, surprisingly, only the mutant Gag protein biotinylated the HIV-1 Envelope protein. We also identified over 50 cellular proteins that were biotinylated, including membrane and cytoskeletal proteins and proteins involved in lipid metabolism, nuclear import, translation, and RNA processing. Our results offer new insights into HIV-1 Gag protein trafficking and activities and provide new potential targets for antiviral interference.


Assuntos
HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Mapeamento de Interação de Proteínas , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Biotina/análise , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genes Reporter , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Coloração e Rotulagem/métodos
7.
Bioorg Med Chem ; 24(21): 5618-5625, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27663546

RESUMO

We have analyzed a set of quinolinequinones with respect to their reactivities, cytotoxicities, and anti-HIV-1 properties. Most of the quinolinequinones were reactive with glutathione, and several acted as sulfhydryl crosslinking agents. Quinolinequinones inhibited binding of the HIV-1 matrix protein to RNA to varying degrees, and several quinolinequinones showed the capacity to crosslink HIV-1 matrix proteins in vitro, and HIV-1 structural proteins in virus particles. Cytotoxicity assays yielded quinolinequinone CC50 values in the low micromolar range, reducing the potential therapeutic value of these compounds. However, one compound, 6,7-dichloro-5,8-quinolinequinone potently inactivated HIV-1, suggesting that quinolinequinones may prove useful in the preparation of inactivated virus vaccines or for other virucidal purposes.


Assuntos
Fármacos Anti-HIV/farmacologia , HIV-1/efeitos dos fármacos , Quinolinas/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Matriz Nuclear/efeitos dos fármacos , Quinolinas/síntese química , Quinolinas/química , RNA Viral/antagonistas & inibidores , Relação Estrutura-Atividade
8.
J Biol Chem ; 288(1): 666-76, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23135280

RESUMO

The matrix domain (MA) of the HIV-1 precursor Gag (PrGag) protein directs PrGag proteins to assembly sites at the plasma membrane by virtue of its affinity to the phospholipid, phosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)). MA also binds to RNA at a site that overlaps its PI(4,5)P(2) site, suggesting that RNA binding may protect MA from associating with inappropriate cellular membranes prior to PrGag delivery to the PM. Based on this, we have developed an assay in which small molecule competitors to MA-RNA binding can be characterized, with the assumption that such compounds might interfere with essential MA functions and help elucidate additional features of MA binding. Following this approach, we have identified four compounds, including three thiadiazolanes, that compete with RNA for MA binding. We also have identified MA residues involved in thiadiazolane binding and found that they overlap the MA PI(4,5)P(2) and RNA sites. Cell culture studies demonstrated that thiadiazolanes inhibit HIV-1 replication but are associated with significant levels of toxicity. Nevertheless, these observations provide new insights into MA binding and pave the way for the development of antivirals that target the HIV-1 matrix domain.


Assuntos
Fármacos Anti-HIV/química , HIV-1/química , Ligantes , Fosfolipídeos/química , RNA/química , Sítios de Ligação , Linhagem Celular , Sobrevivência Celular , Relação Dose-Resposta a Droga , Desenho de Fármacos , Humanos , Espectroscopia de Ressonância Magnética/métodos , Microscopia de Fluorescência/métodos , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Retroviridae/metabolismo , Tiadiazóis/química
9.
bioRxiv ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38895228

RESUMO

While investigating methods to target gene delivery vectors to specific cell types, we examined the potential of using a nanobody against the SARS-CoV-2 Spike protein receptor binding domain to direct lentivirus infection of Spike-expressing cells. Using three different approaches, we found that lentiviruses with surface-exposed nanobody domains selectively infect Spike-expressing cells. The targeting is dependent on the fusion function of Spike, and conforms to a model in which nanobody binding to the Spike protein triggers the Spike fusion machinery. The nanobody-Spike interaction also is capable of directing cell-cell fusion, and the selective infection of nanobody-expressing cells by Spike-pseudotyped lentivirus vectors. Significantly, cells infected with SARS-CoV-2 are efficiently and selectively infected by lentivirus vectors pseudotyped with a chimeric nanobody protein. Our results suggest that cells infected by any virus that forms syncytia may be targeted for gene delivery using an appropriate nanobody or virus receptor mimic. Vectors modified in this fashion may prove useful in the delivery of immunomodulators to infected foci to mitigate the effects of viral infections. IMPORTANCE: We have discovered that lentiviruses decorated on their surfaces with a nanobody against the SARS-CoV-2 Spike protein selectively infect Spike-expressing cells. Infection is dependent on the specificity of the nanobody and the fusion function of the Spike protein, and conforms to a reverse fusion model, in which nanobody binding to Spike triggers the Spike fusion machinery. The nanobody-Spike interaction also can drive cell-cell fusion, and infection of nanobody-expressing cells with viruses carrying the Spike protein. Importantly, cells infected with SARS-CoV-2 are selectively infected with nanobody-decorated lentiviruses. These results suggest that cells infected by any virus that expresses an active receptor-binding fusion protein may be targeted by vectors for delivery of cargoes to mitigate infections.

10.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-37645775

RESUMO

Mycobacterium tuberculosis (Mtb) is known to survive within macrophages by compromising the integrity of the phagosomal compartment in which it resides. This activity primarily relies on the ESX-1 secretion system, predominantly involving the protein duo ESAT-6 and CFP-10. CFP-10 likely acts as a chaperone, while ESAT-6 likely disrupts phagosomal membrane stability via a largely unknown mechanism. we employ a series of biochemical analyses, protein modeling techniques, and a novel ESAT-6-specific nanobody to gain insight into the ESAT-6's mode of action. First, we measure the binding kinetics of the tight 1:1 complex formed by ESAT-6 and CFP-10 at neutral pH. Subsequently, we demonstrate a rapid self-association of ESAT-6 into large complexes under acidic conditions, leading to the identification of a stable tetrameric ESAT-6 species. Using molecular dynamics simulations, we pinpoint the most probable interaction interface. Furthermore, we show that cytoplasmic expression of an anti-ESAT-6 nanobody blocks Mtb replication, thereby underlining the pivotal role of ESAT-6 in intracellular survival. Together, these data suggest that ESAT-6 acts by a pH dependent mechanism to establish two-way communication between the cytoplasm and the Mtb-containing phagosome.

11.
Elife ; 122024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805257

RESUMO

Mycobacterium tuberculosis (Mtb) is known to survive within macrophages by compromising the integrity of the phagosomal compartment in which it resides. This activity primarily relies on the ESX-1 secretion system, predominantly involving the protein duo ESAT-6 and CFP-10. CFP-10 likely acts as a chaperone, while ESAT-6 likely disrupts phagosomal membrane stability via a largely unknown mechanism. we employ a series of biochemical analyses, protein modeling techniques, and a novel ESAT-6-specific nanobody to gain insight into the ESAT-6's mode of action. First, we measure the binding kinetics of the tight 1:1 complex formed by ESAT-6 and CFP-10 at neutral pH. Subsequently, we demonstrate a rapid self-association of ESAT-6 into large complexes under acidic conditions, leading to the identification of a stable tetrameric ESAT-6 species. Using molecular dynamics simulations, we pinpoint the most probable interaction interface. Furthermore, we show that cytoplasmic expression of an anti-ESAT-6 nanobody blocks Mtb replication, thereby underlining the pivotal role of ESAT-6 in intracellular survival. Together, these data suggest that ESAT-6 acts by a pH-dependent mechanism to establish two-way communication between the cytoplasm and the Mtb-containing phagosome.


Assuntos
Antígenos de Bactérias , Proteínas de Bactérias , Macrófagos , Mycobacterium tuberculosis , Fagossomos , Anticorpos de Domínio Único , Humanos , Antígenos de Bactérias/metabolismo , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/metabolismo , Fagossomos/metabolismo , Anticorpos de Domínio Único/metabolismo
12.
Virology ; 579: 54-66, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36603533

RESUMO

Trimers of the HIV-1 envelope (Env) protein perform receptor binding and virus-cell fusion functions during the virus life cycle. The cytoplasmic tail (CT) of Env forms an unusual baseplate structure, and is palmitoylated, rich in arginines, carries trafficking motifs, binds cholesterol, and interacts with host proteins. To dissect CT activities, we examined a panel of Env variants, including CT truncations, mutations, and an extension. We found that whereas all variants could replicate in permissive cells, viruses with CT truncations or baseplate mutations were defective in restrictive cells. We also identified a determinant in HIV-1 amphotericin sensitivity, and characterized variants that escape amphotericin inhibition via viral protease-mediated CT cleavage. Results additionally showed that full-length, his tagged Env can oligomerize and be co-assembled with CT truncations that delete portions of the baseplate, host protein binding sites, and trafficking signals. Our observations illuminate novel aspects of HIV-1 CT structure, interactions, and functions.


Assuntos
HIV-1 , HIV-1/genética , Anfotericina B , Replicação Viral , Mutação , Citoplasma
13.
J Virol ; 85(10): 4730-8, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21367891

RESUMO

The human immunodeficiency virus (HIV) capsid (CA) protein assembles into a hexameric lattice that forms the mature virus core. Contacts between the CA N-terminal domain (NTD) of one monomer and the C-terminal domain (CTD) of the adjacent monomer are important for the assembly of this core. In this study, we have examined the effects of mutations in the NTD region associated with this interaction. We have found that such mutations yielded modest reductions of virus release but major effects on viral infectivity. Cell culture and in vitro assays indicate that the infectivity defects relate to abnormalities in the viral cores. We have selected second-site compensatory mutations that partially restored HIV infectivity. These mutations map to the CA CTD and to spacer peptide 1 (SP1), the portion of the precursor Gag protein immediately C terminal to the CTD. The compensatory mutations do not locate to the molecularly modeled intermolecular NTD-CTD interface. Rather, the compensatory mutations appear to act indirectly, possibly by realignment of the C-terminal helix of the CA CTD, which participates in the NTD-CTD interface and has been shown to serve an important role in the assembly of infectious virus.


Assuntos
Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , HIV-1/genética , Multimerização Proteica , Supressão Genética , Linhagem Celular , HIV-1/crescimento & desenvolvimento , HIV-1/patogenicidade , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Virulência , Liberação de Vírus
14.
iScience ; 25(3): 103960, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35224467

RESUMO

The spike glycoprotein of SARS-CoV-2 engages with human ACE 2 to facilitate infection. Here, we describe an alpaca-derived heavy chain antibody fragment (VHH), saRBD-1, that disrupts this interaction by competitively binding to the spike protein receptor-binding domain. We further generated an engineered bivalent nanobody construct engineered by a flexible linker and a dimeric Fc conjugated nanobody construct. Both multivalent nanobodies blocked infection at picomolar concentrations and demonstrated no loss of potency against emerging variants of concern including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Epsilon (B.1.427/429), and Delta (B.1.617.2). saRBD-1 tolerates elevated temperature, freeze-drying, and nebulization, making it an excellent candidate for further development into a therapeutic approach for COVID-19.

15.
Virology ; 562: 19-28, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34246112

RESUMO

The capsid (CA) domain of the HIV-1 precursor Gag (PrGag) protein plays multiple roles in HIV-1 replication, and is central to the assembly of immature virions, and mature virus cores. CA proteins themselves are composed of N-terminal domains (NTDs) and C-terminal domains (CTDs). We have investigated the interactions of CA with anti-CA nanobodies, which derive from the antigen recognition regions of camelid heavy chain-only antibodies. The one CA NTD-specific and two CTD-specific nanobodies we analyzed proved sensitive and specific HIV-1 CA detection reagents in immunoassays. When co-expressed with HIV-1 Gag proteins in cells, the NTD-specific nanobody was efficiently assembled into virions and did not perturb virus assembly. In contrast, the two CTD-specific nanobodies reduced PrGag processing, virus release and HIV-1 infectivity. Our results demonstrate the feasibility of Gag-targeted nanobody inhibition of HIV-1.


Assuntos
Capsídeo/imunologia , HIV-1/fisiologia , Anticorpos de Domínio Único/metabolismo , Montagem de Vírus , Capsídeo/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/imunologia , Linhagem Celular , HIV-1/imunologia , Humanos , Domínios Proteicos , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Vírion/metabolismo , Liberação de Vírus , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
16.
J Virol ; 83(23): 12196-203, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19776118

RESUMO

The human immunodeficiency virus type 1 (HIV-1) matrix (MA) protein targets HIV-1 precursor Gag (PrGag) proteins to assembly sites at plasma membrane (PM) sites that are enriched in cholesterol and phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)]. MA is myristoylated, which enhances membrane binding, and specifically binds PI(4,5)P(2) through headgroup and 2' acyl chain contacts. MA also binds nucleic acids, although the significance of this association with regard to the viral life cycle is unclear. We have devised a novel MA binding assay and used it to examine MA interactions with membranes and nucleic acids. Our results indicate that cholesterol increases the selectivity of MA for PI(4,5)P(2)-containing membranes, that PI(4,5)P(2) binding tolerates 2' acyl chain variation, and that the MA myristate enhances membrane binding efficiency but not selectivity. We also observed that soluble PI(4,5)P(2) analogues do not compete effectively with PI(4,5)P(2)-containing liposomes for MA binding but surprisingly do increase nonspecific binding to liposomes. Finally, we have demonstrated that PI(4,5)P(2)-containing liposomes successfully outcompete nucleic acids for MA binding, whereas other liposomes do not. These results support a model in which RNA binding protects MA from associating with inappropriate cellular membranes prior to PrGag delivery to PM assembly sites.


Assuntos
Membrana Celular/metabolismo , Antígenos HIV/metabolismo , HIV-1/fisiologia , Ácidos Nucleicos/metabolismo , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Colesterol/metabolismo , Humanos , Lipossomos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Ligação Proteica
17.
Nat Commun ; 11(1): 3652, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694525

RESUMO

Zika virus (ZIKV), an arbovirus of global concern, remodels intracellular membranes to form replication sites. How ZIKV dysregulates lipid networks to allow this, and consequences for disease, is poorly understood. Here, we perform comprehensive lipidomics to create a lipid network map during ZIKV infection. We find that ZIKV significantly alters host lipid composition, with the most striking changes seen within subclasses of sphingolipids. Ectopic expression of ZIKV NS4B protein results in similar changes, demonstrating a role for NS4B in modulating sphingolipid pathways. Disruption of sphingolipid biosynthesis in various cell types, including human neural progenitor cells, blocks ZIKV infection. Additionally, the sphingolipid ceramide redistributes to ZIKV replication sites, and increasing ceramide levels by multiple pathways sensitizes cells to ZIKV infection. Thus, we identify a sphingolipid metabolic network with a critical role in ZIKV replication and show that ceramide flux is a key mediator of ZIKV infection.


Assuntos
Interações Hospedeiro-Patógeno , Esfingolipídeos/metabolismo , Proteínas não Estruturais Virais/metabolismo , Infecção por Zika virus/patologia , Zika virus/patogenicidade , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Células HEK293 , Humanos , Lipidômica , Camundongos , Esfingolipídeos/análise , Células Vero , Replicação Viral , Zika virus/metabolismo , Infecção por Zika virus/virologia
18.
Virology ; 538: 1-10, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31550607

RESUMO

Wild type (WT) HIV-1 envelope (Env) protein cytoplasmic tails (CTs) appear to be composed of membrane-proximal, N-terminal unstructured regions, and three C-terminal amphipathic helices. Previous studies have shown that WT and CT-deleted (ΔCT) Env proteins are incorporated into virus particles via different mechanisms. WT Env proteins traffic to cell plasma membranes (PMs), are rapidly internalized, recycle to PMs, and are incorporated into virions in permissive and restrictive cells in a Gag matrix (MA) protein-dependent fashion. In contrast, previously described ΔCT proteins do not appear to be internalized after their arrival to PMs, and do not require MA, but are only incorporated into virions in permissive cell lines. We have analyzed a new set of HIV-1 CT variants with respect to their replication in permissive and restrictive cells. Our results provide novel details as to how CT elements regulate HIV-1 Env protein function.


Assuntos
Infecções por HIV/virologia , HIV-1/fisiologia , Replicação Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Membrana Celular/virologia , HIV-1/química , HIV-1/genética , Células HeLa , Humanos , Domínios Proteicos , Vírion/química , Vírion/genética , Vírion/fisiologia , Montagem de Vírus , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
19.
J Mol Biol ; 431(19): 3706-3717, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31330153

RESUMO

Mutations of the Ras proteins HRAS, KRAS4A, KRAS4B, and NRAS are associated with a high percentage of all human cancers. The proteins are composed of highly homologous N-terminal catalytic or globular domains, plus C-terminal hypervariable regions (HVRs). Post-translational modifications of all RAS HVRs helps target RAS proteins to cellular membrane locations where they perform their signaling functions. For the predominant KRAS4 isoform, KRAS4B, post-translational farnesylation and carboxymethylation, along with a patch of HVR basic residues help foster membrane binding. Recent investigations implicate membrane-bound RAS dimers, oligomers, and nanoclusters as landing pads for effector proteins that relay RAS signals. The details of these RAS signaling platforms have not been elucidated completely, in part due to the difficulties in preparing modified proteins. We have employed properly farnesylated and carboxymethylated KRAS4B in lipid monolayer incubations to examine how the proteins assemble on membranes. Our results reveal novel insights into to how KRAS4B may organize on membranes.


Assuntos
Membrana Celular/metabolismo , Prenilação , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sequência de Aminoácidos , Humanos , Imageamento Tridimensional , Metilação , Modelos Moleculares , Proteínas Proto-Oncogênicas p21(ras)/química
20.
Virology ; 518: 264-271, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29549788

RESUMO

The matrix (MA) domain of the HIV-1 precursor Gag protein (PrGag) has been shown interact with the HIV-1 envelope (Env) protein, and to direct PrGag proteins to plasma membrane (PM) assembly sites by virtue of its affinity to phosphatidylinositol-4,5-bisphosphate (PI[4,5]P2). Unexpectedly, HIV-1 viruses with large MA deletions (ΔMA) have been shown to be conditionally infectious as long as they are matched with Env truncation mutant proteins or alternative viral glycoproteins. To characterize the interactions of wild type (WT) and ΔMA Gag proteins with PI(4,5)P2 and other acidic phospholipids, we have employed a set of lipid biosensors as probes. Our investigations showed marked differences in WT and ΔMA Gag colocalization with biosensors, effects on biosensor release, and association of biosensors with virus-like particles. These results demonstrate an alternative approach to the analysis of viral protein-lipid associations, and provide new data as to the lipid compositions of HIV-1 assembly sites.


Assuntos
Produtos do Gene gag/metabolismo , HIV-1/fisiologia , Proteínas Mutantes/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Montagem de Vírus , Técnicas Biossensoriais , Produtos do Gene gag/genética , HIV-1/genética , Proteínas Mutantes/genética , Ligação Proteica , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA