Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mediators Inflamm ; 2020: 8880651, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424439

RESUMO

Mycotoxin contamination in feedstuffs is a worldwide problem that causes serious health issues both in humans and animals, and it contributes to serious economic losses. Deoxynivalenol (DON) and T-2 toxin (T-2) are major trichothecene mycotoxins and are known to challenge mainly intestinal barrier functions. Polyphenolic rosmarinic acid (RA) appeared to have antioxidant and anti-inflammatory properties in vitro. The aim of this study was to investigate protective effects of RA against DON and T-2 or combined mycotoxin-induced intestinal damage in nontumorigenic porcine cell line, IPEC-J2. It was ascertained that simultaneous treatment of DON and T-2 (DT2: 1 µmol/L DON + 5 nmol/L T - 2) for 48 h and 72 h reduced transepithelial electrical resistance of cell monolayer, which was restored by 50 µmol/L RA application. It was also found that DT2 for 48 h and 72 h could induce oxidative stress and elevate interleukin-6 (IL-6) and interleukin-8 (IL-8) levels significantly, which were alleviated by the administration of RA. DT2 administration contributed to the redistribution of claudin-1; however, occludin membranous localization was not altered by combined mycotoxin treatment. In conclusion, beneficial effect of RA was exerted on DT2-deteriorated cell monolayer integrity and on the perturbated redox status of IPEC-J2 cells.


Assuntos
Cinamatos/farmacologia , Depsídeos/farmacologia , Enterócitos/efeitos dos fármacos , Toxina T-2/administração & dosagem , Tricotecenos/administração & dosagem , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Membrana Celular/metabolismo , Claudina-1/metabolismo , Citocinas/metabolismo , Técnicas In Vitro , Inflamação , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Micotoxinas/metabolismo , Oxirredução , Estresse Oxidativo , Suínos , Ácido Rosmarínico
2.
Acta Vet Hung ; 67(4): 578-587, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842605

RESUMO

Sphingosine-1-phosphate (S1P) has been reported as a matriptase activator. The aim of this study was to reveal if S1P can influence hepcidin production. Furthermore, we investigated how S1P can affect the viability and the redox status of primary hepatocytes. Rat primary hepatocytes were cultivated for 72 h and were treated with 50, 200, 1000 ng/ml S1P. Cell-free supernatants were collected every 24 h. Cell viability was tested by a colorimetric method using tetrazolium compound (MTS). The hepcidin levels in the cell-free supernatants were examined with hepcidin sandwich ELISA to determine the effect of S1P on the hepcidin-modulating ability of matriptase. In order to estimate the extent of S1P-generated oxidative stress, extracellular H2O2 measurements were performed by the use of fluorescent dye. Based on the findings, S1P treatment did not cause cell death for 72 h at concentrations up to 1000 ng/ml. S1P did not influence the extracellular H2O2 production for 72 h. The hepcidin levels were significantly suppressed in hepatocytes exposed to S1P treatment. Further studies would be needed to explore the exact mechanism of action of S1P.


Assuntos
Hepatócitos/efeitos dos fármacos , Hepcidinas/biossíntese , Lisofosfolipídeos/administração & dosagem , Serina Endopeptidases/metabolismo , Esfingosina/análogos & derivados , Animais , Peróxido de Hidrogênio/metabolismo , Masculino , Modelos Animais , Ratos , Ratos Sprague-Dawley , Esfingosina/administração & dosagem
3.
J Enzyme Inhib Med Chem ; 31(5): 736-41, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26118419

RESUMO

The type II trypsin-like transmembrane serine protease matriptase, is mainly expressed in epithelial cells and one of the key regulators in the formation and maintenance of epithelial barrier integrity. Therefore, we have studied the inhibition of matriptase in a non-transformed porcine intestinal IPEC-J2 cell monolayer cultured on polyester membrane inserts by the non-selective 4-(2-aminoethyl)-benzosulphonylfluoride (AEBSF) and four more selective 3-amidinophenylalanine-derived matriptase inhibitors. It was found that suppression of matriptase activity by MI-432 and MI-460 led to decreased transepithelial electrical resistance (TER) of the cell monolayer and to an enhanced transport of fluorescently labelled dextran, a marker for paracellular transport between apical and basolateral compartments. To this date this is the first report in which the inhibition of matriptase activity by synthetic inhibitors has been correlated to a reduced barrier integrity of a non-cancerous IPEC-J2 epithelial cell monolayer in order to describe interaction between matriptase activity and intestinal epithelium in vitro.


Assuntos
Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/enzimologia , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/farmacologia , Animais , Transporte Biológico Ativo/efeitos dos fármacos , Linhagem Celular , Dextranos/química , Dextranos/metabolismo , Impedância Elétrica , Ativação Enzimática/efeitos dos fármacos , Fluorescência , Estrutura Molecular , Serina Endopeptidases/química , Sulfonas/farmacologia , Suínos
4.
Biomedicines ; 9(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919461

RESUMO

The function of the transmembrane serine protease matriptase is well described in mammals, but it has not been elucidated in avian species yet. Hence, the aim of the present study was to assess the effects of the 3-amidinophenylalanine (3-AphA)-type matriptase inhibitors MI432 and MI460 on the inflammatory and oxidative state of chicken primary hepatocyte mono-cultures and hepatocyte-nonparenchymal cell co-cultures, the latter serving as a proper model of hepatic inflammation in birds. Cell cultures were exposed to MI432 and MI460 for 4 and 24 h at 10, 25, and 50 µM concentrations, and thereafter the cellular metabolic activity, extracellular interleukin (IL-)6, IL-8, H2O2 and malondialdehyde concentrations were monitored. Both inhibitors caused a transient moderate reduction in the metabolic activity following 4 h exposure, which was restored after 24 h, reflecting the fast hepatic adaptation potential to matriptase inhibitor administration. Furthermore, MI432 triggered an intense elevation in the cellular proinflammatory IL-6 and IL-8 production after both incubation times in all concentrations, which was not coupled to enhanced oxidative stress and lipid peroxidation based on unchanged H2O2 production, malondialdehyde levels and glutathione peroxidase activity. These data suggest that physiological matriptase activities might have a key function in retaining the metabolic and inflammatory homeostasis of the liver in chicken, without being a major modulator of the hepatocellular redox state.

5.
Oxid Med Cell Longev ; 2020: 3854247, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33456669

RESUMO

The effect of fermented wheat germ extract (FWGE) (Immunovet®) was evaluated with cotreatments with deoxynivalenol (DON) and T-2 toxin (T-2). These mycotoxins are produced by Fusarium mold species. The effects of FWGE on IPEC-J2 with DON and T-2 have not been studied until now. The IPEC-J2 porcine, nontumorigenic cell line was selected to investigate the outcome of the individually and simultaneously added compounds, as it has in vivo-like properties. The cells were treated for 24 h with the selected solutions; then, the IPEC-J2 cells were allowed to regenerate in a culture medium for an additional 24 h. In our results, DON and T-2 significantly increased the adverse impacts on cell viability and integrity of the cell monolayer. To elucidate the extent of oxidative stress, extracellular H2O2 concentrations and intracellular reactive oxygen species (ROS) were measured. FWGE appeared to be beneficial to IPEC-J2 cells given the separately and significantly decreased ROS levels. 1% and 2% FWGE could significantly reduce mycotoxin-induced oxidative stress. In conclusion, the results demonstrate that FWGE exerted protective effects to counteract the oxidative stress-provoking properties of applied fusariotoxins in the nontumorigenic IPEC-J2 cell line.


Assuntos
Células Epiteliais/efeitos dos fármacos , Micotoxinas/toxicidade , Extratos Vegetais/farmacologia , Tricotecenos/toxicidade , Animais , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Impedância Elétrica , Células Epiteliais/metabolismo , Fluoresceínas/metabolismo , Espaço Intracelular/metabolismo , Micotoxinas/química , Espécies Reativas de Oxigênio/metabolismo , Suínos , Tricotecenos/química
6.
Inflammation ; 38(2): 775-83, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25097076

RESUMO

The effect of oxidative stress on barrier integrity and localization of transmembrane serine proteinase 2 (TMPRSS2) were studied using porcine epithelial IPEC-J2 cells on membrane inserts. Increased paracellular permeability of FITC-dextran 4 kDa (fluorescence intensity 43,508 ± 2,391 versus 3,550 ± 759) and that of gentamicin (3.41 ± 0.06 % increase to controls) were measured parallel with the reduced transepithelial electrical resistance (23.3 ± 4.06 % decrease) of cell layers 6 h after 1 h 1 mM H2O2 treatment. The immunohistochemical localization of adherens junctional ß-catenin was not affected by reactive oxygen species (ROS) up to 4 mM H2O2. Peroxide-triggered enhanced paracellular permeability of IPEC-J2 cell layer was accompanied by predominantly cytoplasmic occurrence of TMPRSS2 embedded in cell membrane under physiological conditions. These results support that ROS can influence paracellular gate opening via multifaceted mode of action without involvement of ß-catenin redistribution in adherens junction. Altered distribution pattern of TMPRSS2 and relocalized transmembrane serine protease activity may contribute to weakening of epithelial barrier integrity under acute oxidative stress.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Estresse Oxidativo/fisiologia , Serina Endopeptidases/metabolismo , Animais , Animais Recém-Nascidos , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Gentamicinas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Serina Endopeptidases/análise , Serina Proteases/análise , Serina Proteases/metabolismo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA