RESUMO
Flavins are blue-light-absorbing chromophores with rich redox activity. Biologically, the most important are riboflavin (vitamin B2), flavin mononucleotide, and flavin adenine dinucleotide, the latter two of which are catalytic cofactors in enzymes. Flavins pivot between oxidized, one electron-, and two electron-reduced forms in different protonation states, depending on enzymatic requirements. Some flavoenzymes use light as a reagent for chemical bond formation, photoinduced electron transfer, or conformational changes required for light-sensitive signaling. Therefore, the photochemistry and photophysics of flavins have received wide attention. Fluorescence from oxidized flavin is often used to detect and track changes in flavin oxidation states. However, there have been conflicting reports over the past 45 years as to whether reduced flavin in solution has detectable fluorescence. Here, using single photon counting emission spectroscopy with rigorous sample preparation, we show definitively that reduced flavins are essentially nonfluorescent, having a quantum yield more than three orders of magnitude lower than oxidized flavin. This result will force a re-evaluation of experiments and models that assumed otherwise.
Assuntos
Flavinas , Riboflavina , Flavinas/metabolismo , Oxirredução , Transporte de Elétrons , Flavina-Adenina Dinucleotídeo/química , Mononucleotídeo de Flavina/química , Compostos OrgânicosRESUMO
Flavins are photoenzymatic cofactors often exploiting the absorption of light to energize photoinduced redox chemistry in a variety of contexts. Both flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) are used for this function. The study of these photoenzymes has been facilitated using flavin analogs. Most of these analogs involve modification of the flavin ring, and there is recent evidence that adenine (Ade)-modified FAD can affect enzyme turnover, but so far this has only been shown for enzymes where the adenine and flavin rings are close to each other in a stacked conformation. FAD is also stacked in aqueous solution, and its photodynamics are quite different from unstacked FAD or FMN. Oxidized photoexcited FAD decays rapidly, presumably through PET with Ade as donor and Fl* as acceptor. Definitive identification of the spectral signatures of Adeâ+ and Flâ- radicals is elusive. Here we use the FAD analog Flavin 1,N6-Ethenoadenine Dinucleotide (εFAD) to study how different photochemical outcomes depend on the identity of the Ade moiety in stacked FAD and its analog εFAD. We have used UV-Vis transient absorption spectroscopy complemented by TD-DFT calculations to investigate the excited state evolution of the flavins. In FAD*, no radicals were observed, suggesting that FAD* does not undergo PET. εFAD* kinetics showed a broad absorption band that suggests a charge transfer state exists upon photoexcitation with evidence for radical pair formation. Surprisingly, significant triplet flavin was produced from εFAD* We hypothesize that the dipolar (ε)Ade moieties differentially modulate the singlet-triplet energy gap, resulting in different intersystem crossing rates. The additional electron density on the etheno group of εFAD supplies better orbital overlap with the flavin S1 state, accelerating charge transfer in that molecule.
Assuntos
Mononucleotídeo de Flavina , Flavina-Adenina Dinucleotídeo , Adenina/química , Teoria da Densidade Funcional , Dinitrocresóis , Mononucleotídeo de Flavina/química , Flavina-Adenina Dinucleotídeo/análogos & derivados , Flavinas/química , Espectrometria de FluorescênciaRESUMO
The apparent failure of ecosystems to recover from increasingly widespread disturbance is a global concern. Despite growing focus on factors inhibiting resilience and restoration, we still know very little about how demographic and population processes influence recovery. Using inverse and forward demographic modelling of 531 post-fire sagebrush populations across the western US, we show that demographic processes during recovery from seeds do not initially lead to population growth but rather to years of population decline, low density, and risk of extirpation after disturbance and restoration, even at sites with potential to support long-term, stable populations. Changes in population structure, and resulting transient population dynamics, lead to a > 50% decline in population growth rate after disturbance and significant reductions in population density. Our results indicate that demographic processes influence the recovery of ecosystems from disturbance and that demographic analyses can be used by resource managers to anticipate ecological transformation risk.
Assuntos
Artemisia/crescimento & desenvolvimento , Ecossistema , Incêndios , Modelos Biológicos , Densidade Demográfica , Dinâmica Populacional , Estados UnidosRESUMO
Radical pair formation and decay are implicated in a wide range of biological processes including avian magnetoreception. However, studying such biological radical pairs is complicated by both the complexity and relative fragility of natural systems. To resolve open questions about how natural flavin-amino acid radical pair systems are engineered, and to create new systems with novel properties, we developed a stable and highly adaptable de novo artificial protein system. These protein maquettes are designed with intentional simplicity and transparency to tolerate aggressive manipulations that are impractical or impossible in natural proteins. Here we characterize the ultrafast dynamics of a series of maquettes with differing electron-transfer distance between a covalently ligated flavin and a tryptophan in an environment free of other potential radical centers. We resolve the spectral signatures of the cysteine-ligated flavin singlet and triplet states and reveal the picosecond formation and recombination of singlet-born radical pairs. Magnetic field-sensitive triplet-born radical pair formation and recombination occurs at longer timescales. These results suggest that both triplet- and singlet-born radical pairs could be exploited as biological magnetic sensors.
Assuntos
Flavinas/química , Proteínas/química , Triptofano/química , Cisteína/química , Transporte de Elétrons , Radicais Livres/química , Cinética , Campos Magnéticos , Modelos Moleculares , OxirreduçãoRESUMO
As human beings we live our lives simultaneously in two realms: the realm of problems, and the realm of mysteries. Each of these realms is associated with a different way of seeing, interpreting, and responding to the phenomena we encounter and experience in our lives, including the phenomenon of aging. This essay elaborates on the distinction between problems and mysteries as realms of thinking, feeling, and acting in the world, and applies this distinction to three aspects of the care of the elderly: delaying the aging process, dementia, and managing dying.
Assuntos
Envelhecimento/psicologia , Atitude Frente a Morte , Demência/terapia , Geriatria/métodos , Misticismo , Assistência Terminal/métodos , Pensamento , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Atitude do Pessoal de Saúde , Causas de Morte , Demência/diagnóstico , Demência/mortalidade , Demência/psicologia , Emoções , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Longevidade , Pessoa de Meia-Idade , Prognóstico , Assistência Terminal/psicologiaRESUMO
Association of the two ribosomal subunits during the process of translation initiation is a crucial step of protein synthesis. The two subunits (30S and 50S) of the bacterial 70S ribosome are held together by 12 dynamic bridges involving RNA-RNA, RNA-protein, and protein-protein interactions. The process of bridge formation, such as whether all these bridges are formed simultaneously or in a sequential order, is poorly understood. To understand such processes, we have developed and implemented a class of microfluidic devices that mix two components to completion within 0.4 ms and spray the mixture in the form of microdroplets onto an electron microscopy grid, yielding a minimum reaction time of 9.4 ms before cryofixation. Using these devices, we have obtained cryo-EM data corresponding to reaction times of 9.4 and 43 ms and have determined 3D structures of ribosomal subunit association intermediates. Molecular analyses of the cryo-EM maps reveal that eight intersubunit bridges (bridges B1a, B1b, B2a, B2b, B3, B7a, B7b, and B8) form within 9.4 ms, whereas the remaining four bridges (bridges B2c, B4, B5, and B6) take longer than 43 ms to form, suggesting that bridges are formed in a stepwise fashion. Our approach can be used to characterize sequences of various dynamic functional events on complex macromolecular assemblies such as ribosomes.
Assuntos
Microscopia Crioeletrônica/métodos , Ribossomos/química , Sistema Livre de Células , Modelos Moleculares , Ribossomos/ultraestruturaRESUMO
The distribution of forest cover exerts strong controls on the spatiotemporal distribution of snow accumulation and snowmelt. The physical processes that govern these controls are poorly understood given a lack of detailed measurements of snow states. In this study, we address one of many measurement gaps by using contact spectroscopy to measure snow optical grain size at high spatial resolution in trenches dug between tree boles in a subalpine forest. Trenches were collocated with continuous measurements of snow depth and vertical profiles of snow temperature and supplemented with manual measurements of snow temperature, geometric grain size, grain type, and density from trench walls. There was a distinct difference in snow optical grain size between winter and spring periods. In winter and early spring, when facetted snow crystal types were dominant, snow optical grain size was 6% larger in canopy gaps versus under canopy positions; a difference that was smaller than the measurement uncertainty. By midspring, the magnitude of snow optical grain size differences increased dramatically and patterns of snow optical grain size became highly directional with 34% larger snow grains in areas south versus north of trees. In winter, snow temperature gradients were up to 5-15°C m-1 greater under the canopy due to shallower snow accumulation. However, in canopy gaps, snow depths were greater in fall and early winter and therefore more significant kinetic growth metamorphism occurred relative to under canopy positions, resulting in larger snow grains in canopy gaps. Our findings illustrate the novelty of our method of measuring snow optical grain size, allowing for future studies to advance the understanding of how forest and meteorological conditions interact to impact snowpack evolution.
RESUMO
Although recent literature on professionalism in healthcare abounds in recommended character traits, attitudes, or behaviors, with a few exceptions, the recommendations are untethered to any serious consideration of the contours and ethical demands of the healing relationship. This article offers an approach based on the professional's commitment to trustworthiness in response to the vulnerability of those seeking professional help. Because our willingness and ability to trust health professionals or healthcare institutions are affected by our personality, culture, race, age, prior experiences with illness and healthcare, and socioeconomic and political circumstances-"the social determinants of trust"-the attitudes and behaviors that actually do gain trust are patient and context specific. Therefore, in addition to the commitment to cultivating attitudes and behaviors that embody trustworthiness, professionalism also includes the commitment to actually gaining a patient's or family's trust by learning, through individualized dialogue, which conditions would win their justified trust, given their particular history and social situation.
Assuntos
Princípios Morais , Relações Médico-Paciente/ética , Profissionalismo/ética , Confiança , Populações Vulneráveis , Humanos , Medicina de PrecisãoRESUMO
Peptidoglycan associated lipoprotein (Pal) of Escherichia coli (E. coli) is a characteristic bacterial lipoprotein, with an N-terminal lipid moiety anchoring it to the outer membrane. Since its discovery over three decades ago, Pal has been well studied for its participation in the Tol-Pal complex which spans the periplasm and has been proposed to play important roles in bacterial survival, pathogenesis and virulence. Previous studies of Pal place the lipoprotein in the periplasm of E. coli, allowing it to interact with Tol proteins and the peptidoglycan layer. Here, we describe for the first time, a subpopulation of Pal which is present on the cell surface of E. coli. Flow cytometry and confocal microscopy detect anti-Pal antibodies on the surface of intact E. coli cells. Interestingly, Pal is surface exposed in an 'all or nothing' manner, such that most of the cells contain only internal Pal, with fewer cells ( < 20ââ%) exhibiting surface Pal.
Assuntos
Proteínas da Membrana Bacteriana Externa/análise , Proteínas de Escherichia coli/análise , Escherichia coli/química , Lipoproteínas/análise , Proteínas de Membrana/análise , Peptidoglicano/análise , Citometria de Fluxo , Microscopia ConfocalRESUMO
Time-resolved cryo electron microscopy (TRCEM) has emerged as a powerful technique for transient structural characterization of isolated biomacromolecular complexes in their native state within the time scale of seconds to milliseconds. For TRCEM sample preparation, microfluidic device [9] has been demonstrated to be a promising approach to facilitate TRCEM biological sample preparation. It is capable of achieving rapidly aqueous sample mixing, controlled reaction incubation, and sample deposition on electron microscopy (EM) grids for rapid freezing. One of the critical challenges is to transfer samples to cryo-EM grids from the microfluidic device. By using microspraying method, the generated droplet size needs to be controlled to facilitate the thin ice film formation on the grid surface for efficient data collection, while not too thin to be dried out before freezing, i.e., optimized mean droplet size needs to be achieved. In this work, we developed a novel monolithic three dimensional (3D) annular gas-assisted microfluidic sprayer using 3D MEMS (MicroElectroMechanical System) fabrication techniques. The microsprayer demonstrated dense and consistent microsprays with average droplet size between 6-9 µm, which fulfilled the above droplet size requirement for TRCEM sample preparation. With droplet density of around 12-18 per grid window (window size is 58×58 µm), and the data collectible thin ice region of >50% total wetted area, we collected ~800-1000 high quality CCD micrographs in a 6-8 hour period of continuous effort. This level of output is comparable to what were routinely achieved using cryo-grids prepared by conventional blotting and manual data collection. In this case, weeks of data collection process with the previous device [9] has shortened to a day or two. And hundreds of microliter of valuable sample consumption can be reduced to only a small fraction.
RESUMO
There is currently a need for inexpensive, continuous, non-destructive water potential measurements at high temporal resolution (<1 min). We describe here the development and testing of an entirely open-source dendrometer that, when combined with periodic Scholander pressure chamber measurements, provides sub-minute resolution estimates of water potential when placed on tissues exhibiting little or no secondary growth (petioles, monocotyledon stems). The dendrometer can also be used to measure radial growth of stems and branches when placed on dicotyledon and gymnosperm species. The dendrometer can be interfaced directly with a computer in real time in the lab or greenhouse, or connected to a datalogger for long periods of use in the field on batteries. We tested this device on a herbaceous dicotyledon (Helianthus annuus) (petioles and stems) and a monocotyledon (Zea mays) species (stems) for 1 week during dehydration and re-watering treatments under laboratory conditions. We also demonstrated the ability of the device to record branch and trunk diameter variation of a woody dicotyledon (Rhus typhina) in the field. Under laboratory conditions, we compared our device (hereafter 'contact' dendrometer) with modified versions of another open-source dendrometer (the 'optical' dendrometer). Overall, contact and optical dendrometers were well aligned with one another, with Pearson correlation coefficients ranging from 0.77 to 0.97. Both dendrometer devices were well aligned with direct measurements of xylem water potential, with calibration curves exhibiting significant non-linearity, especially at water potentials near the point of incipient plasmolysis, with pseudo R2 values (Efron) ranging from 0.89 to 0.99. Overall, both dendrometers were comparable and provided sufficient resolution to detect subtle differences in stem water potential (ca. 50 kPa) resulting from light-induced changes in transpiration, vapour pressure deficit and drying/wetting soils. All hardware designs, alternative configurations, software and build instructions for the contact dendrometers are provided.
RESUMO
PREMISE OF THE STUDY: The pathway of radial water movement in tree stems presents an unknown with respect to whole-tree hydraulics. Radial profiles have shown substantial axial sap flow in deeper layers of sapwood (that may lack direct connection to transpiring leaves), which suggests the existence of a radial pathway for water movement. Rays in tree stems include ray tracheids and/or ray parenchyma cells and may offer such a pathway for radial water transport. This study investigated relationships between radial hydraulic conductivity (k(s-rad)) and ray anatomical and stem morphological characteristics in the stems of three conifer species whose distributions span a natural aridity gradient across the Cascade Mountain range in Oregon, United States. METHODS: The k(s-rad) was measured with a high-pressure flow meter. Ray tracheid and ray parenchyma characteristics and water transport properties were visualized using autofluorescence or confocal microscopy. KEY RESULTS: The k(s-rad) did not vary predictably with sapwood depth among species and populations. Dye tracer did not infiltrate ray tracheids, and infiltration into ray parenchyma was limited. Regression analyses revealed inconsistent relationships between k(s-rad) and selected anatomical or growth characteristics when ecotypes were analyzed individually and weak relationships between k(s-rad) and these characteristics when data were pooled by tree species. CONCLUSIONS: The lack of significant relationships between k(s-rad) and the ray and stem morphologies we studied, combined with the absence of dye tracer in ray tracheid and limited movement of dye into ray parenchyma suggests that rays may not facilitate radial water transport in the three conifer species studied.
Assuntos
Pinus ponderosa/fisiologia , Caules de Planta/citologia , Pseudotsuga/fisiologia , Árvores/fisiologia , Água/fisiologia , Madeira/fisiologia , Parede Celular/fisiologia , Ecossistema , Pinus ponderosa/anatomia & histologia , Pinus ponderosa/citologia , Caules de Planta/anatomia & histologia , Caules de Planta/fisiologia , Pseudotsuga/anatomia & histologia , Pseudotsuga/citologia , Árvores/anatomia & histologia , Árvores/citologia , Madeira/anatomia & histologiaRESUMO
Habitat loss is the most prevalent threat to biodiversity in North America. One of the most threatened landscapes in the United States is the sagebrush (Artemisia spp.) ecosystem, much of which has been fragmented or converted to non-native grasslands via the cheatgrass-fire cycle. Like many sagebrush obligates, greater sage-grouse (Centrocercus urophasianus) depend upon sagebrush for food and cover and are affected by changes to this ecosystem. We investigated habitat selection by 28 male greater sage-grouse during each of 3 years after a 113,000-ha wildfire in a sagebrush steppe ecosystem in Idaho and Oregon. During the study period, seeding and herbicide treatments were applied for habitat restoration. We evaluated sage-grouse responses to vegetation and post-fire restoration treatments. Throughout the 3 years post-fire, sage-grouse avoided areas with high exotic annual grass cover but selected strongly for recovering sagebrush and moderately strongly for perennial grasses. By the third year post-fire, they preferred high-density sagebrush, especially in winter when sagebrush is the primary component of the sage-grouse diet. Sage-grouse preferred forb habitat immediately post-fire, especially in summer, but this selection preference was less strong in later years. They also selected areas that were intensively treated with herbicide and seeded with sagebrush, grasses, and forbs, although these responses varied with time since treatment. Wildfire can have severe consequences for sagebrush-obligate species due to loss of large sagebrush plants used for food and for protection from predators and thermal extremes. Our results show that management efforts, including herbicide application and seeding of plants, directed at controlling exotic annual grasses after a wildfire can positively affect habitat selection by sage-grouse.
RESUMO
In the Pacific north-west, the Cascade Mountain Range blocks much of the precipitation and maritime influence of the Pacific Ocean, resulting in distinct climates east and west of the mountains. The current study aimed to investigate relationships between water storage and transport properties in populations of Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa) adapted to both climates. Sapwood thickness, capacitance, vulnerability to embolism, and axial and radial conductivity were measured on samples collected from trunks of mature trees. The sapwood of ponderosa pine was three to four times thicker than Douglas-fir. Radial conductivity was higher in west-side populations of both species, but axial conductivity was higher in the east-side populations and in Douglas-fir. Eastern populations of both species had sapwood that was more vulnerable to embolism than west-side populations. Sapwood capacitance was similar between species, but was about twice as great in east-side populations (580 kg m⻳ MPa⻹) as in west-side populations (274 kg m⻳ MPa⻹). Capacitance was positively correlated with both mean embolism pressure and axial conductivity across species and populations, suggesting that coordinated adjustments in xylem efficiency, safety and water storage capacity may serve to avoid embolism along a gradient of increasing aridity.
Assuntos
Pinus ponderosa/fisiologia , Transpiração Vegetal/fisiologia , Pseudotsuga/fisiologia , Xilema/fisiologia , Adaptação Fisiológica , Transporte Biológico , Clima , Secas , Capacitância Elétrica , Condutividade Elétrica , Noroeste dos Estados Unidos , Pinus ponderosa/crescimento & desenvolvimento , Pinus ponderosa/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Caules de Planta/fisiologia , Pseudotsuga/crescimento & desenvolvimento , Pseudotsuga/metabolismo , Água/metabolismo , Xilema/metabolismoRESUMO
We report the investigation of a novel microfluidic mixing device to achieve submillisecond mixing. The micromixer combines two fluid streams of several microliters per second into a mixing compartment integrated with two T- type premixers and 4 butterfly-shaped in-channel mixing elements. We have employed three dimensional fluidic simulations to evaluate the mixing efficiency, and have constructed physical devices utilizing conventional microfabrication techniques. The simulation indicated thorough mixing at flow rate as low as 6 µL/s. The corresponding mean residence time is 0.44 ms for 90% of the particles simulated, or 0.49 ms for 95% of the particles simulated, respectively. The mixing efficiency of the physical device was also evaluated using fluorescein dye solutions and FluoSphere-red nanoparticles suspensions. The constructed micromixers achieved thorough mixing at the same flow rate of 6 µL/s, with the mixing indices of 96% ± 1%, and 98% ± 1% for the dye and the nanoparticle, respectively. The experimental results are consistent with the simulation data. The device demonstrated promising capabilities for time resolved studies for macromolecular dynamics of biological macromolecules.
RESUMO
Lumichrome (7,8-dimethylalloxazine, LC) is a natural photodegradation product and catabolite of flavin coenzymes. Although not a coenzyme itself, LC is used for biosignaling in plants and single-celled organisms, including quorum sensing in the formation of biofilms. The noninvasive detection of in vivo lumichrome would be useful for monitoring this signaling event. For molecules that undergo significant charge redistribution upon light excitation (e.g., intramolecular charge transfer), there are optical detection methods (e.g., second-harmonic generation) that would be well suited to this task. Here, we have used Stark spectroscopy to measure the extent and direction of charge redistribution in photoexcited LC. Stark and low-temperature absorption spectra were obtained at 77 K on LC in ethanol glasses and analyzed using the Liptay analysis to obtain the difference dipole moments and polarizabilities. These data were complemented by a computational analysis of the excited states using density functional theory (DFT) at the TD-B3LYP/6-311+G(2d,p) level of theory.
Assuntos
Teoria Quântica , Percepção de Quorum , Flavinas , Análise EspectralRESUMO
Following a stressful event, the hypothalamus-pituitary-adrenal axis mediates the release of the stress hormone cortisol (corticosterone in rodents; CORT). Elevated CORT binds to glucocorticoid receptors to mediate physiological responses including facilitating memory formation. Previous work from our laboratory demonstrated that male rats exposed to chronic stress demonstrate enhanced contextual fear memories and sensitized CORT responses to subsequent stress exposure; however, this is unknown in female rats. The experiments here tested whether chronic stress enhances fear memory formation in female rats and whether the sensitized CORT response in chronic stress rats contributes to their enhanced fear memory. Studies first examined CORT responses to contextual fear conditioning in male and female rats and examined whether chronic stress enhanced the formation of contextual fear memories 24â¯h later. Studies then used metyrapone, a CORT synthesis inhibitor, to investigate whether blockade of plasma CORT would eliminate the chronic stress-induced enhancement in contextual fear memory. Results show that female rats have greater CORT responses than males, and chronic stress sensitizes the CORT response to fear conditioning in both sexes. However, female rats do not show enhanced contextual fear memory following chronic stress. Chronically stressed male rats show greater memory acquisition and show greater contextual fear memory 24â¯h later following fear conditioning. Metyrapone dampens contextual fear memory in all rats but does not eliminate the enhancement in freezing behavior in chronic stress rats. Collectively, these studies indicate sensitized CORT responses in chronically stressed rats is likely not the mechanism by which chronic stress facilitates memory formation.
Assuntos
Corticosterona/metabolismo , Medo/fisiologia , Memória/fisiologia , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologia , Animais , Condicionamento Clássico , Corticosterona/antagonistas & inibidores , Feminino , Masculino , Metirapona/administração & dosagem , Ratos Endogâmicos F344RESUMO
We describe here the implementation of a flash-photolysis system for time-resolved cryo-electron microscopy. A previously designed computer-controlled cryo-plunging apparatus [White, H.D., Thirumurugan, K., Walker, M.L., Trinick, J., 2003. A second generation apparatus for time-resolved electron cryo-microscopy using stepper motors and electrospray. J. Struct. Biol. 144, 246-252] was used as a hardware platform, onto which a xenon flash lamp and liquid light pipe were mounted. The irradiation initiates a reaction through cleavage of the photolabile blocking group from a biologically active compound. The timespan between flashing and freezing in cryogen is on the order of milliseconds, and defines the fastest observable reaction. Blotting of excess fluid, which takes on the order of 1s, is done before irradiation and thus does not represent a rate-limiting step. A specimen-heating problem, identified by measurements with a thermocouple, was alleviated with the use of thick, aluminum-coated grids.
Assuntos
Microscopia Crioeletrônica/métodos , Fotólise , Acetatos/química , Microscopia Crioeletrônica/instrumentação , Etilenodiaminas/química , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/química , Espectrofotometria Ultravioleta , Temperatura , Tionucleotídeos/química , Fatores de TempoRESUMO
The goal of time-resolved cryo-electron microscopy is to determine structural models for transient functional states of large macromolecular complexes such as ribosomes and viruses. The challenge of time-resolved cryo-electron microscopy is to rapidly mix reactants, and then, following a defined time interval, to rapidly deposit them as a thin film and freeze the sample to the vitreous state. Here we describe a methodology in which reaction components are mixed and allowed to react, and are then sprayed onto an EM grid as it is being plunged into cryogen. All steps are accomplished by a monolithic, microfabricated silicon device that incorporates a mixer, reaction channel, and pneumatic sprayer in a single chip. We have found that microdroplets produced by air atomization spread to sufficiently thin films on a millisecond time scale provided that the carbon supporting film is made suitably hydrophilic. The device incorporates two T-mixers flowing into a single channel of four butterfly-shaped mixing elements that ensure effective mixing, followed by a microfluidic reaction channel whose length can be varied to achieve the desired reaction time. The reaction channel is flanked by two ports connected to compressed humidified nitrogen gas (at 50 psi) to generate the spray. The monolithic mixer-sprayer is incorporated into a computer-controlled plunging apparatus. To test the mixing performance and the suitability of the device for preparation of biological macromolecules for cryo-EM, ribosomes and ferritin were mixed in the device and sprayed onto grids. Three-dimensional reconstructions of the ribosomes demonstrated retention of native structure, and 30S and 50S subunits were shown to be capable of reassociation into ribosomes after passage through the device.