Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 61(39): 15325-15334, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36121917

RESUMO

Double hydrogen atom abstraction from (TMP)OsII(NH3)2 (TMP = tetramesitylporphyrin) with phenoxyl or nitroxyl radicals leads to (TMP)OsIV(NH2)2. This unusual bis(amide) complex is diamagnetic and displays an N-H resonance at 12.0 ppm in its 1H NMR spectrum. 1H-15N correlation experiments identified a 15N NMR spectroscopic resonance signal at -267 ppm. Experimental reactivity studies and density functional theory calculations support relatively weak N-H bonds of 73.3 kcal/mol for (TMP)OsII(NH3)2 and 74.2 kcal/mol for (TMP)OsIII(NH3)(NH2). Cyclic voltammetry experiments provide an estimate of the pKa of [(TMP)OsIII(NH3)2]+. In the presence of Barton's base, a current enhancement is observed at the Os(III/II) couple, consistent with an ECE event. Spectroscopic experiments confirmed (TMP)OsIV(NH2)2 as the product of bulk electrolysis. Double hydrogen atom abstraction is influenced by π donation from the amides of (TMP)OsIV(NH2)2 into the d orbitals of the Os center, favoring the formation of (TMP)OsIV(NH2)2 over N-N coupling. This π donation leads to a Jahn-Teller distortion that splits the energy levels of the dxz and dyz orbitals of Os, results in a low-spin electron configuration, and leads to minimal aminyl character on the N atoms, rendering (TMP)OsIV(NH2)2 unreactive toward amide-amide coupling.

2.
Inorg Chem ; 61(29): 11165-11172, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35829761

RESUMO

Weakening and cleaving N-H bonds is crucial for improving molecular ammonia (NH3) oxidation catalysts. We report the synthesis and H-atom-abstraction reaction of bis(ammonia)chromium porphyrin complexes Cr(TPP)(NH3)2 and Cr(TMP)(NH3)2 (TPP = 5,10,15,20-tetraphenyl-meso-porphyrin and TMP = 5,10,15,20-tetramesityl-meso-porphyrin) using bulky aryloxyl radicals. The triple H-atom-abstraction reaction results in the formation of CrV(por)(≡N), with the nitride derived from NH3, as indicated by UV-vis and IR and single-crystal structural determination of Cr(TPP)(≡N). Subsequent oxidation of this chromium(V) nitrido complex results in the formation of CrIII(por), with scission of the Cr≡N bond. Computational analysis illustrates the progression from CrII to CrV and evaluates the energetics of abstracting H atoms from CrII-NH3 to generate CrV≡N. The formation and isolation of CrV(por)(≡N) illustrates the stability of these species and the need to chemically activate the nitride ligand for atom transfer or N-N coupling reactivity.

3.
J Phys Chem A ; 124(8): 1580-1592, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32017850

RESUMO

Using density functional theory (DFT), we studied the catalytic activity of iron oxide nanoclusters that mimic the structure of the active site in the soluble form of methane monooxygenase (sMMO) for the partial oxidation of methane to methanol. Using N2O as the oxidant, we consider a radical-rebound mechanism and a concerted mechanism for the oxidation of methane on either a bridging oxygen (Ob) or a terminal oxygen (Ot) active site. We find that the radical-rebound pathway is preferred over the concerted pathway by 40-50 kJ/mol, but the desorption of methanol and the regeneration of the oxygen site are found to be the highest barriers for the direct conversion of methane to methanol with these catalysts. As demonstrated by a population analysis, the Ox (x = b or t) site behaves as an oxygen radical during the H abstraction, and the [Fe+-Ox-] site behaves as a Lewis acid-base pair during the concerted C-H cleavage. Molecular orbital decomposition analysis further demonstrates electron transfer during the oxidation and reduction steps of the reaction. High-level multireference calculations were also carried out to further assess the DFT results. Understanding how these systems behave during the proposed reaction pathways provides new insights into how they can be tuned for methane partial oxidation.

4.
ACS Appl Mater Interfaces ; 12(25): 28217-28231, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32427460

RESUMO

Density functional theory is used to study the tunability of trigonal prismatic SBUs found in metal-organic frameworks (MOFs) such as MIL-100, MIL-101, and PCN-250/MIL-127 of chemical composition M3+2M2+(µ3-O)(RCOO)6 for the partial oxidation of methane to methanol. We performed a combinatorial screening by varying the composition of the trimetallic node (M13+)2(M22+) (where M1 and M2 = V, Cr, Mn, Fe, Co, and Ni) and calculated the reaction pathway on both M1 and M2 sites. The systematic replacement of metals in the trimetallic cluster allowed us to study the influence of spectator atoms on the catalytic activity of a specific metal site in the cluster toward the N2O activation and C-H bond activation steps of the reaction. In the screening, we identified the top-performing node compositions with predicted barriers lower than those already reported for experimentally tested MOFs with trigonal prismatic SBUs. This work demonstrates the opportunity to tune the catalytic activity of MOFs for redox reactions by changing their metal node composition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA