Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Transl Med ; 14: 50, 2016 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-26873444

RESUMO

As the human population continues to age, an increasing number of people will exhibit significant deficits in cognitive function and dementia. It is now recognized that cerebrovascular, metabolic and neurodegenerative diseases all play major roles in the evolution of cognitive impairment and dementia. Thus with our more recent recognition of these relationships and our need to understand and more positively impact on this world health problem, "The Leo and Anne Albert Charitable Trust" (Gene Pranzo, Trustee with significant support from Susan Brogan, Meeting Planner) provided generous support for this inaugural international workshop that was held from April 13-16, 2015 at the beautiful Ritz Carlton Golf Resort in North Naples, Florida. Researchers from SUNY Downstate Medical Center, Brooklyn, NY organized the event by selecting the present group of translationally inclined preclinical, clinical and population scientists focused on cerebrovascular disease (CVD) risk and its progression to vascular cognitive impairment (VCI) and dementia. Participants at the workshop addressed important issues related to aging, cognition and dementia by: (1) sharing new data, information and perspectives that intersect vascular, metabolic and neurodegenerative diseases, (2) discussing gaps in translating population risk, clinical and preclinical information to the progression of cognitive loss, and (3) debating new approaches and methods to fill these gaps that can translate into future therapeutic interventions. Participants agreed on topics for group discussion prior to the meeting and focused on specific translational goals that included promoting better understanding of dementia mechanisms, the identification of potential therapeutic targets for intervention, and discussed/debated the potential utility of diagnostic/prognostic markers. Below summarizes the new data-presentations, concepts, novel directions and specific discussion topics addressed by this international translational team at our "First Leo and Anne Albert Charitable Trust 'Think Tank' VCI workshop".


Assuntos
Transtornos Cerebrovasculares/complicações , Transtornos Cognitivos/complicações , Demência/complicações , Pesquisa Translacional Biomédica , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Ratos
2.
PLoS One ; 19(1): e0295504, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38166102

RESUMO

BACKGROUND: Stroke is a major cause of death, disability, and public health problems. Its intervention is limited to early treatment with thrombolytics and/or endovascular clot removal with mechanical thrombectomy without any available subacute or chronic neuroprotective treatments. RNS60 has reduced neuroinflammation and increased neuronal survival in several animal models of neurodegeneration and trauma. The aim here was to evaluate whether RNS60 protects the brain and cognitive function in a mouse stroke model. METHODS: Male C57BL/6J mice were subjected to sham or ischemic stroke surgery using 60-minute transient middle cerebral artery occlusion (tMCAo). In each group, mice received blinded daily administrations of RNS60 or control fluids (PNS60 or normal saline [NS]), beginning 2 hours after surgery over 13 days. Multiple neurobehavioral tests were conducted (Neurological Severity Score [mNSS], Novel Object Recognition [NOR], Active Place Avoidance [APA], and the Conflict Variant of APA [APAc]). On day 14, cortical microvascular perfusion (MVP) was measured, then brains were removed and infarct volume, immunofluorescence of amyloid beta (Aß), neuronal density, microglial activation, and white matter damage/myelination were measured. SPSS was used for analysis (e.g., ANOVA for parametric data; Kruskal Wallis for non-parametric data; with post-hoc analysis). RESULTS: Thirteen days of treatment with RNS60 reduced brain infarction, amyloid pathology, neuronal death, microglial activation, white matter damage, and increased MVP. RNS60 reduced brain pathology and resulted in behavioral improvements in stroke compared to sham surgery mice (increased memory-learning in NOR and APA, improved cognitive flexibility in APAc). CONCLUSION: RNS60-treated mice exhibit significant protection of brain tissue and improved neurobehavioral functioning after tMCAo-stroke. Additional work is required to determine mechanisms, time-window of dosing, and multiple dosing volumes durations to support clinical stroke research.


Assuntos
Isquemia Encefálica , Ataque Isquêmico Transitório , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Camundongos , Masculino , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Peptídeos beta-Amiloides , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral/patologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Modelos Animais de Doenças
3.
Microvasc Res ; 86: 30-3, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23261755

RESUMO

Passive leg raising is a simple diagnostic maneuver that has been proposed as a measure of arterial vasodilator reserve and possibly endothelial function. While passive leg raising has previously been shown to lower blood pressure, increase flow velocity and cause brachial artery dilation, its effects on microvascular flow has not been well studied. Also, passive leg raising has been directly compared previously to upper arm but never to lower arm occlusion of blood flow induced hyperemia responses. We compared changes in macrovascular indices measured by brachial artery ultrasound and microvascular perfusion measured by Laser Doppler Flowmetry induced by passive leg raising to those provoked by upper arm and lower arm induced hyperemia in healthy subjects. Upper arm induced hyperemia increased mean flow velocity by 398%, induced brachial artery dilatation by 16.3%, and increased microvascular perfusion by 246% (p<.05 for all). Lower arm induced hyperemia increased flow velocity by 227%, induced brachial artery dilatation by 10.8%, and increased microvascular perfusion by 281%. Passive leg raising increased flow velocity by 29% and brachial artery dilatation by 5.6% (p<.05 for all), but did not change microvascular perfusion (-5%, p=ns). In conclusion, passive leg raising increases flow velocity orders of magnitude less than does upper arm or lower arm induced hyperemia. Passive leg raising-induced brachial artery dilatation is less robust than either of these hyperemic techniques. Finally, although upper arm and lower arm hyperemia elicits macrovascular and microvascular responses, passive leg raising elicits only macrovascular responses.


Assuntos
Vasos Sanguíneos/fisiologia , Hiperemia/fisiopatologia , Perna (Membro)/irrigação sanguínea , Microcirculação/fisiologia , Manipulações Musculoesqueléticas , Vasodilatação/fisiologia , Adulto , Braço/irrigação sanguínea , Velocidade do Fluxo Sanguíneo , Artéria Braquial/diagnóstico por imagem , Artéria Braquial/fisiologia , Feminino , Humanos , Fluxometria por Laser-Doppler , Masculino , Microvasos/fisiologia , Atividade Motora , Exercícios de Alongamento Muscular , Perfusão , Ultrassonografia , Adulto Jovem
4.
Geroscience ; 44(1): 25-37, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34606040

RESUMO

White matter pathologies are critically involved in the etiology of vascular cognitive impairment-dementia (VCID), Alzheimer's disease (AD), and Alzheimer's disease and related diseases (ADRD), and therefore need to be considered a treatable target ( Roseborough A, Hachinski V, Whitehead S. White matter degeneration - a treatable target? Roseborough et al. JAMA Neurol [Internet]. 2020 Apr 27;77(7):793-4, [1] . To help address this often-missed area of research, several workshops have been sponsored by the Leo and Anne Albert Charitable Trust since 2015, resulting in the incorporation of "The Albert Research Institute for White Matter and Cognition" in 2020. The first annual "Institute" meeting was held virtually on March 3-4, 2021. The Institute provides a forum and workspace for communication and support of the advancement of white matter science and research to better understand the evolution and prevention of dementia. It serves as a platform for young investigator development, to introduce new data and debate biology mechanisms and new ideas, and to encourage and support new research collaborations and directions to clarify how white matter changes, with other genetic and health risk factors, contribute to cognitive impairment. Similar to previous Albert Trust-sponsored workshops (Barone et al. in J Transl Med 14:1-14, [2]; Sorond et al. in GeroScience 42:81-96, [3]), established expert investigators were identified and invited to present. Opportunities to attend and present were also extended by invitation to talented research fellows and younger scientists. Also, updates on institute-funded research collaborations were provided and discussed. The summary that follows is a synopsis of topics and discussion covered in the workshop.


Assuntos
Demência Vascular , Leucoencefalopatias , Substância Branca , Academias e Institutos , Cognição , Humanos , Leucoencefalopatias/patologia
5.
Brain Commun ; 2(2): fcaa132, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33215083

RESUMO

Small vessel cerebrovascular disease, visualized as white matter hyperintensities on T2-weighted magnetic resonance imaging, contributes to the clinical presentation of Alzheimer's disease. However, the extent to which cerebrovascular disease represents an independent pathognomonic feature of Alzheimer's disease or directly promotes Alzheimer's pathology is unclear. The purpose of this study was to examine the association between white matter hyperintensities and plasma levels of tau and to determine if white matter hyperintensities and tau levels interact to predict Alzheimer's disease diagnosis. To confirm that cerebrovascular disease promotes tau pathology, we examined tau fluid biomarker concentrations and pathology in a mouse model of ischaemic injury. Three hundred ninety-one participants from the Alzheimer's Disease Neuroimaging Initiative (74.5 ± 7.1 years of age) were included in this cross-sectional analysis. Participants had measurements of plasma total-tau, cerebrospinal fluid beta-amyloid, and white matter hyperintensities, and were diagnosed clinically as Alzheimer's disease (n = 97), mild cognitive impairment (n = 186) or cognitively normal control (n = 108). We tested the relationship between plasma tau concentration and white matter hyperintensity volume across diagnostic groups. We also examined the extent to which white matter hyperintensity volume, plasma tau, amyloid positivity status and the interaction between white matter hyperintensities and plasma tau correctly classifies diagnostic category. Increased white matter hyperintensity volume was associated with higher plasma tau concentration, particularly among those diagnosed clinically with Alzheimer's disease. Presence of brain amyloid and the interaction between plasma tau and white matter hyperintensity volume distinguished Alzheimer's disease and mild cognitive impairment participants from controls with 77.6% and 63.3% accuracy, respectively. In 63 Alzheimer's Disease Neuroimaging Initiative participants who came to autopsy (82.33 ± 7.18 age at death), we found that higher degrees of arteriosclerosis were associated with higher Braak staging, indicating a positive relationship between cerebrovascular disease and neurofibrillary pathology. In a transient middle cerebral artery occlusion mouse model, aged mice that received transient middle cerebral artery occlusion, but not sham surgery, had increased plasma and cerebrospinal fluid tau concentrations, induced myelin loss, and hyperphosphorylated tau pathology in the ipsilateral hippocampus and cerebral hemisphere. These findings demonstrate a relationship between cerebrovascular disease, operationalized as white matter hyperintensities, and tau levels, indexed in the plasma, suggesting that hypoperfusive injury promotes tau pathology. This potential causal association is supported by the demonstration that transient cerebral artery occlusion induces white matter damage, increases biofluidic markers of tau, and promotes cerebral tau hyperphosphorylation in older-adult mice.

6.
Stroke ; 40(10): e558-63, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19745180

RESUMO

BACKGROUND AND PURPOSE: The majority of pharmacological agents for stroke were developed based on the assumption that neurological deficits will be reduced upon the successful interruption of biochemical mechanisms leading to neuronal death. Despite significant evidence of preclinical efficacy, none of these agents succeeded. They either failed to demonstrate efficacy in the clinic or their development was halted for safety, strategic, or commercial reasons. SUMMARY OF REVIEW: This "neuroprotection strategy" has focused primarily on targets in the neurotoxic environment that occurs under ischemic conditions. In many cases, these agents were designed to tackle events that are known to start almost immediately after onset of ischemia, which is far before a realistic therapeutic time window opens for most, if not all, patients with stroke. In other instances, they were evaluated beyond a realistic timeframe in which one could expect significant salvageable tissue or penumbra to exist. Surprisingly, most of these agents were not evaluated in conjunction with strategies for improving perfusion to the affected tissue, indicating an overoptimistic assumption that neuroprotection alone could be sufficient to halt injury caused by an abrupt interruption of brain blood flow. CONCLUSIONS: We provide a constructive translational medicine perspective about how one could improve the drug development process with the hope that the probability for success can increase in our quest to establish a novel therapy for stroke.


Assuntos
Encéfalo/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Desenho de Fármacos , Fármacos Neuroprotetores/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/fisiologia , Citoproteção/fisiologia , Progressão da Doença , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Humanos , Fármacos Neuroprotetores/uso terapêutico , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia , Fatores de Tempo , Falha de Tratamento
7.
Exp Eye Res ; 89(5): 782-90, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19631642

RESUMO

In previous studies, inhibition of mitogen-activated protein kinase (MAP) p38 significantly improved recovery and attenuated apoptosis after retinal ischemia in rats. Yet, ischemic preconditioning (IPC) attenuated the ischemia-induced increase in p38 expression. We hypothesized that p38 was required for induction of ischemic tolerance by IPC. We examined the mechanisms of involvement of p38 in IPC neuroprotection. IPC or ischemia was induced in rat retina in vivo. Recovery after ischemia performed 24h after IPC was assessed functionally (electroretinography) and histologically at 7d after ischemia in the presence or absence of inhibition of p38. We examined the role of p38alpha in the mimicking of IPC produced by opening mitochondrial KATP channels using diazoxide, or stimulation of p38 activation by anisomycin. The importance of adenosine receptors in p38 activation after IPC was assessed using specific blockers of adenosine A1 and A2a receptors. Interfering RNA (siRNA) or SB203580 was used to block p38alpha. Phosphorylated p38 levels were measured. Phosphorylated p38 protein increased with IPC. Interfering RNA (siRNA) to p38alpha prior to IPC, or inhibiting p38 activation with SB203580, with ischemia following 24h later, significantly attenuated the neuroprotective effect of IPC. Anisomycin administered to increase p38 mimicked IPC, an effect blocked by SB203580. IPC-mimicking with diazoxide, an opener of mitochondrial KATP channels, was diminished with p38alpha siRNA. Adenosine receptor blockade did not decrease the elevated levels of phosphorylated p38 after IPC. Specific inhibition of p38alpha suggests that this MAPK is involved in the protective effects of IPC, and that p38 is downstream of mitochondrial KATP channels, but not adenosine receptors, in this neuroprotection.


Assuntos
Isquemia/terapia , Precondicionamento Isquêmico , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Neurônios Retinianos/enzimologia , Vasos Retinianos/fisiopatologia , Antagonistas do Receptor A1 de Adenosina , Antagonistas do Receptor A2 de Adenosina , Animais , Anisomicina/farmacologia , Diazóxido/farmacologia , Modelos Animais de Doenças , Eletrorretinografia , Ativadores de Enzimas/farmacologia , Imidazóis/farmacologia , Pressão Intraocular , Isquemia/complicações , Isquemia/enzimologia , Isquemia/patologia , Isquemia/fisiopatologia , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 14 Ativada por Mitógeno/genética , Fosforilação , Canais de Potássio/agonistas , Canais de Potássio/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Neurônios Retinianos/patologia , Transdução de Sinais , Fatores de Tempo
8.
Int J Nanomedicine ; 14: 6451-6464, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31496697

RESUMO

BACKGROUND: We recently reported on long-term comprehensive biocompatibility and biodistribution study of fluorescent nanodiamond particles (NV)-Z-average 800nm (FNDP-(NV)) in rats. FNDP-(NV) primary deposition was found in the liver, yet liver function tests remained normal. PURPOSE: The present study aimed to gain preliminary insights on discrete localization of FNDP-(NV) in liver cells of the hepatic lobule unit and venous micro-vasculature. Kinetics of FDNP-(NV) uptake into liver cells surrogates in culture was conducted along with cell cytokinesis as markers of cells' viability. METHODS: Preserved liver specimens from a pilot consisting of two animals which were stained for cytoskeletal elements (fluorescein-isothiocyanate-phalloidin) were examined for distribution of FNDP-(NV) by fluorescent microscopy (FM) and Confocal-FM (CFM) using near infra-red fluorescence (NIR). Hepatocellular carcinoma cells (HepG-2) and human umbilical vein endothelial cells (HUVEC) were cultured with FNDP-(NV) and assayed for particle uptake and location using spectrophotometric technology and microscopy. RESULTS: HepG-2 and HUVEC displayed rapid (<30 mins) onset and concentration-dependent FNDP-(NV) internalization and formation of peri-nuclear corona. FM/CFM of liver sections revealed FNDP-(NV) presence throughout the hepatic lobules structures marked by spatial distribution, venous microvascular spaces and parenchyma and non-parenchyma cells. CONCLUSION: The robust presence of FNDP-(NV) throughout the hepatic lobules including those internalized within parenchyma cells and agglomerates in the liver venous micro-circulation were not associated with macro or micro histopathological signs nor vascular lesions. Cells cultures indicated normal cytokinesis in cells containing FNDP-(NV) agglomerates. Liver parenchyma cells and the liver microcirculation remain agnostic to presence of FNDP-(NV) in the sinusoids or internalized in the hepatic cells.


Assuntos
Materiais Biocompatíveis/farmacologia , Fígado/metabolismo , Nanodiamantes/química , Animais , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Imageamento Tridimensional , Cinética , Fígado/efeitos dos fármacos , Microscopia de Fluorescência , Tamanho da Partícula , Ratos Sprague-Dawley , Distribuição Tecidual
9.
Int J Nanomedicine ; 14: 1163-1175, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863052

RESUMO

BACKGROUND: Thromboembolic events are a major cause of heart attacks and strokes. However, diagnosis of the location of high risk vascular clots is hampered by lack of proper technologies for their detection. We recently reported on bio-engineered fluorescent diamond-(NV)-Z~800nm (FNDP-(NV)) conjugated with bitistatin (Bit) and proven its ability to identify iatrogenic blood clots in the rat carotid artery in vivo by Near Infra-Red (NIR) monitored by In Vivo Imaging System (IVIS). PURPOSE: The objective of the present research was to assess the in vivo biocompatibility of FNDP-(NV)-Z~800nm infused intravenously to rats. Multiple biological variables were assessed along this 12 week study commissioned in anticipation of regulatory requirements for a long-term safety assessment. METHODS: Rats were infused under anesthesia with aforementioned dose of the FNDP-(NV), while equal number of animals served as control (vehicle treated). Over the 12 week observation period rats were tested for thriving, motor, sensory and cognitive functions. At the termination of study, blood samples were obtained under anesthesia for comprehensive hematology and biochemical assays. Furthermore, 6 whole organs (liver, spleen, brain, heart, lung and kidney) were collected and examined ex vivo for FNDP-NV) via NIR monitored by IVIS and histochemical inspection. RESULTS: All animals survived, thrived (no change in body and organ growth). Neuro-behavioral functions remain intact. Hematology and biochemistry (including liver and kidney functions) were normal. Preferential FNDP-(NV) distribution identified the liver as the main long-term repository. Certified pathology reports indicated no outstanding of finding in all organs. CONCLUSION: The present study suggests outstanding biocompatibility of FNDP-(NV)-Z~800nm after long-term exposure in the rat.


Assuntos
Materiais Biocompatíveis/química , Nanodiamantes/química , Especificidade de Órgãos , Tamanho da Partícula , Animais , Comportamento Animal , Bioengenharia , Peso Corporal , Fezes , Fluorescência , Masculino , Tamanho do Órgão , Peptídeos/química , Ratos Sprague-Dawley , Venenos de Serpentes , Solubilidade , Análise de Sobrevida , Fatores de Tempo , Distribuição Tecidual
10.
Pharmacology ; 81(1): 1-10, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17726342

RESUMO

BACKGROUND/AIMS: Isradipine, a calcium channel blocker, provides consistent protection of the brain from injury and reduces neurological deficits produced by ischemic stroke in hypertensive rats. In these experiments, isradipine was utilized to cross-validate both the serial MRI measurement of brain infarctions with histology measurements and to validate a series of simple neurological deficit tests in order to establish a more rapid, higher throughput approach to screening compounds for utility in stroke. METHODS: Spontaneously hypertensive rats were treated with vehicle, or 2.5 or 5.0 mg/kg isradipine and middle cerebral artery occlusion. T(2)-weighted MRI image analysis was compared to standard triphenyltetrazolium chloride-stained histological image analysis of brain sections to quantify isradipine neuroprotection 1, 3, and 30 days after middle cerebral artery occlusion (MCAO; stroke). In addition, serial evaluation (i.e. 1, 2, 5, 12, 20 and 30 days after MCAO) of four simple neurobehavioral tests were completed for each animal. Tests included assessment of hindlimb and forelimb function, and balance beam and proprioception performance. RESULTS: At 1, 3 and 30 days there was a significant positive correlation of the percent hemispheric infarct for T(2)-weighted MRI and histology (p < 0.05). Practically identical isradipine dose-response neuroprotection curves were observed for both measurement procedures. Isradipine produced a dose-related reduction in all neurological deficits scored by the four neurological deficit tests (p < 0.05). In addition, a significant time-related recovery from neurological deficits in vehicle-treated rats was observed (p < 0.05). The four different neurological deficit tests did provide unique time-related profiles of neurological recovery. CONCLUSIONS: The present study validates the use of serial MRI in experimental stroke and establishes several simple neurological tests that can be used to measure neurological/behavioral deficits associated with brain injury and brain recovery of function over time. Under these conditions, T(2)-weighted MRI and neurological testing required only about 10 min each per animal, thus providing rapid data collection and analysis and requiring reduced scientific personnel.


Assuntos
Comportamento Animal/efeitos dos fármacos , Infarto Encefálico , Bloqueadores dos Canais de Cálcio/uso terapêutico , Isradipino/uso terapêutico , Imageamento por Ressonância Magnética , Animais , Infarto Encefálico/tratamento farmacológico , Infarto Encefálico/patologia , Infarto Encefálico/fisiopatologia , Bloqueadores dos Canais de Cálcio/administração & dosagem , Modelos Animais de Doenças , Isradipino/administração & dosagem , Masculino , Testes Neuropsicológicos , Valor Preditivo dos Testes , Ratos , Ratos Endogâmicos SHR , Resultado do Tratamento
11.
Pharmacology ; 81(1): 11-7, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17726343

RESUMO

BACKGROUND/AIMS: Phosphodiesterase type 4 (PDE4) has been previously shown to regulate colonic contractile activity in vitro. In this study, the effects of PDE4 inhibition were assessed in a model of stress-induced defecation previously demonstrated to be due to increased colonic transit/evacuation. METHODS: Rats were individually placed in a mild restraint cage and placed into a 12 degrees C environment (cold-restraint stress) for 60 min. Mice received restraint (only) stress at room temperature for 30 min. Loperamide (positive control compound) or two different PDE4 inhibitors (rolipram and roflumilast) were administered orally at several doses to the rodents 1 h before stress began. Vehicle alone was administered for comparison. The number of fecal pellets expelled during stress (fecal pellet output), total fecal pellet wet weight and total fecal water content were measured. RESULTS: Loperamide produced a dose-related decrease (ID(50)s in mg/kg) in fecal pellet output (rat = 7.4, mouse = 0.7) and significantly decreased fecal wet weight (72.9%) and decreased fecal percent water content (9.4%). The two PDE4 inhibitors produced a similar dose-related inhibition of fecal pellet output. Rolipram exhibited ID(50)s in rat and mouse of 14.1 and 27.1, respectively. Rolipram significantly decreased fecal wet weight (58.8%) but increased fecal percent water content (15.0%). For roflumilast, ID(50)s were 24.2 mg/kg and 12.4 in the rat and mouse, respectively. Although roflumilast also significantly (p < 0.05) decreased fecal wet weight (47.2%), it did not significantly increase fecal percent water content. CONCLUSIONS: These data indicate that PDE4 inhibition is effective in reducing rodent stress-induced defecation, provides the first functional data on a potential role for PDE4 activity in the colonic evacuation response to stress, and indicates the potential utility of PDE4 inhibitors in functional bowel disease such as irritable bowel syndrome requires further evaluation.


Assuntos
Defecação/efeitos dos fármacos , Motilidade Gastrointestinal/efeitos dos fármacos , Inibidores da Fosfodiesterase 4 , Inibidores de Fosfodiesterase/uso terapêutico , Estresse Psicológico/fisiopatologia , Aminopiridinas/administração & dosagem , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Animais , Antidiarreicos/administração & dosagem , Antidiarreicos/farmacologia , Antidiarreicos/uso terapêutico , Benzamidas/administração & dosagem , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Temperatura Baixa , Ciclopropanos/administração & dosagem , Ciclopropanos/farmacologia , Ciclopropanos/uso terapêutico , Síndrome do Intestino Irritável/etiologia , Síndrome do Intestino Irritável/prevenção & controle , Loperamida/administração & dosagem , Loperamida/farmacologia , Loperamida/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibidores de Fosfodiesterase/administração & dosagem , Inibidores de Fosfodiesterase/farmacologia , Ratos , Ratos Sprague-Dawley , Restrição Física , Rolipram/administração & dosagem , Rolipram/farmacologia , Rolipram/uso terapêutico , Estresse Psicológico/complicações , Estresse Psicológico/enzimologia
12.
Int J Nanomedicine ; 13: 5449-5468, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271140

RESUMO

INTRODUCTION: We hereby report on studies aimed to characterize safety, pharmacokinetics, and bio-distribution of fluorescent nanodiamond particles (NV)-Z~800 (FNDP-(NV)) administered to rats by intravenous infusion in a single high dose. METHODS: Broad scale biological variables were monitored following acute (90 minutes) and subacute (5 or 14 days) exposure to FNDP-(NV). Primary endpoints included morbidity and mortality, while secondary endpoints focused on hematology and clinical biochemistry biomarkers. Particle distribution (liver, spleen, lung, heart, and kidney) was assessed by whole organ near infrared imaging using an in vivo imaging system. This was validated by the quantification of particles extracted from the same organs and visualized by fluorescent and scanning electron microscopy. FNDP-(NV)-treated rats showed no change in morbidity or mortality and preserved normal motor and sensory function, as assessed by six different tests. RESULTS: Blood cell counts and plasma biochemistry remained normal. The particles were principally distributed in the liver and spleen. The liver particle load accounted for 51%, 24%, and 18% at 90 minutes, 5 days, and 14 days, respectively. A pilot study of particle clearance from blood indicated 50% clearance 33 minutes following the end of particle infusion. CONCLUSION: We concluded that systemic exposure of rats to a single high dose of FDNP-(NV)-Z~800 (60 mg/kg) appeared to be safe and well tolerated over at least 2 weeks. These data suggest that FNDP-(NV) should proceed to preclinical development in the near future.


Assuntos
Materiais Biocompatíveis/efeitos adversos , Materiais Biocompatíveis/farmacocinética , Nanodiamantes/química , Tamanho da Partícula , Animais , Biomarcadores/metabolismo , Contagem de Células Sanguíneas , Peso Corporal/efeitos dos fármacos , Fluorescência , Infusões Intravenosas , Masculino , Nanodiamantes/ultraestrutura , Tamanho do Órgão/efeitos dos fármacos , Especificidade de Órgãos , Projetos Piloto , Ratos Sprague-Dawley , Solubilidade , Distribuição Tecidual/efeitos dos fármacos
14.
PLoS One ; 12(9): e0184049, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28880966

RESUMO

There is interest in pharmacologic preconditioning for end-organ protection by targeting the HIF system. This can be accomplished by inhibition of prolyl 4-hydroxylase (PHD). GSK360A is an orally active PHD inhibitor that has been previously shown to protect the failing heart. We hypothesized that PHD inhibition can also protect the brain from injuries and resulting behavioral deficits that can occur as a result of surgery. Thus, our goal was to investigate the effect of pre-stroke surgery brain protection using a verified GSK360A PHD inhibition paradigm on post-stroke surgery outcomes. Vehicle or an established protective dose (30 mg/kg, p.o.) of GSK360A was administered to male Sprague-Dawley rats. Initially, GSK360A pharmacokinetics and organ distribution were determined, and then PHD-HIF pharmacodynamic markers were measured (i.e., to validate the pharmacological effects of the GSK360A administration regimen). Results obtained using this validated PHD dose-regimen indicated significant improvement by GSK360A (30mg/kg); administered at 18 and 5 hours prior to transient middle cerebral artery occlusion (stroke). GSK360A exposure and plasma, kidney and brain HIF-PHD pharmacodynamics endpoints (e.g., erythropoietin; EPO and Vascular Endothelial Growth Factor; VEGF) were measured. GSK360A provided rapid exposure in plasma (7734 ng/ml), kidney (45-52% of plasma level) and brain (1-4% of plasma level), and increased kidney EPO mRNA (80-fold) and brain VEGF mRNA (2-fold). We also observed that GSK360A increased plasma EPO (300-fold) and VEGF (2-fold). Further assessments indicated that GSK360A reduced post-stroke surgery neurological deficits (47-64%), cognitive dysfunction (60-75%) and brain infarction (30%) 4 weeks later. Thus, PHD inhibition using GSK360A pretreatment produced long-term post-stroke brain protection and improved behavioral functioning. These data support PHD inhibition, specifically by GSK360A, as a potential strategy for pre-surgical use to reduce brain injury and functional decline due to surgery-related cerebral injury.


Assuntos
Comportamento Animal , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/etiologia , Transtornos Cognitivos/tratamento farmacológico , Glicina/análogos & derivados , Atividade Motora , Inibidores de Prolil-Hidrolase/uso terapêutico , Quinolonas/uso terapêutico , Acidente Vascular Cerebral/complicações , Administração Oral , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas/sangue , Lesões Encefálicas/fisiopatologia , Transtornos Cognitivos/etiologia , Eritropoetina/sangue , Eritropoetina/genética , Glicina/administração & dosagem , Glicina/farmacocinética , Glicina/farmacologia , Glicina/uso terapêutico , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Infarto da Artéria Cerebral Média/sangue , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Atividade Motora/efeitos dos fármacos , Especificidade de Órgãos/efeitos dos fármacos , Prolil Hidroxilases/metabolismo , Inibidores de Prolil-Hidrolase/administração & dosagem , Inibidores de Prolil-Hidrolase/farmacologia , Quinolonas/administração & dosagem , Quinolonas/farmacocinética , Quinolonas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Sensação/efeitos dos fármacos , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/fisiopatologia , Fator A de Crescimento do Endotélio Vascular/sangue , Fator A de Crescimento do Endotélio Vascular/genética
15.
Int J Nanomedicine ; 12: 8471-8482, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29200855

RESUMO

The aim of this feasibility study was to test the ability of fluorescent nanodiamond particles (F-NDP) covalently conjugated with bitistatin (F-NDP-Bit) to detect vascular blood clots in vivo using extracorporeal near-infrared (NIR) imaging. Specifically, we compared NIR fluorescence properties of F-NDP with N-V (F-NDPNV) and N-V-N color centers and sizes (100-10,000 nm). Optimal NIR fluorescence and tissue penetration across biological tissues (rat skin, porcine axillary veins, and skin) was obtained for F-NDPNV with a mean diameter of 700 nm. Intravital imaging (using in vivo imaging system [IVIS]) in vitro revealed that F-NDPNV-loaded glass capillaries could be detected across 6 mm of rat red-muscle barrier and 12 mm of porcine skin, which equals the average vertical distance of a human carotid artery bifurcation from the surface of the adjacent skin (14 mm). In vivo, feasibility was demonstrated in a rat model of occlusive blood clots generated using FeCl3 in the carotid artery bifurcation. Following systemic infusions of F-NDPNV-Bit (3 or 15 mg/kg) via the external carotid artery or femoral vein (N=3), presence of the particles in the thrombi was confirmed both in situ via IVIS, and ex vivo via confocal imaging. The presence of F-NDPNV in the vascular clots was further confirmed by direct counting of fluorescent particles extracted from clots following tissue solubilization. Our data suggest that F-NDPNV-Bit associate with vascular blood clots, presumably by binding of F-NDPNV-Bit to activated platelets within the blood clot. We posit that F-NDPNV-Bit could serve as a noninvasive platform for identification of vascular thrombi using NIR energy monitored by an extracorporeal device.


Assuntos
Bioengenharia/métodos , Diagnóstico por Imagem , Desintegrinas/química , Raios Infravermelhos , Nanodiamantes/química , Peptídeos/química , Trombose/diagnóstico , Animais , Artérias Carótidas/patologia , Modelos Animais de Doenças , Desintegrinas/administração & dosagem , Fluorescência , Humanos , Infusões Intravenosas , Masculino , Peptídeos/administração & dosagem , Ratos Sprague-Dawley , Venenos de Serpentes , Suínos
16.
Methods Mol Med ; 104: 105-84, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15454667

RESUMO

Almost all injurious stimuli, when applied below the threshold of producing injury, activate endogenous protective mechanisms that significantly decrease the degree of injury after subsequent injurious stimuli. For example, a short duration of ischemia (i.e., ischemic preconditioning [PC]) can provide significant brain protection to subsequent long-duration ischemia (i.e., ischemic tolerance [IT]). PC/IT has recently been shown in human brain, suggesting that learning more about these endogenous neuroprotective mechanisms could help identify new approaches to treat patients with stroke and other central nervous system disorders/injury. This chapter provides a brief overview of PC/IT research, illustrates the types of data that can be generated from in vivo and in vitro models to help us understand gene and protein expression related to induced neuroprotective mechanisms, and emphasizes the importance of future research on this phenomenon to help discover new mechanisms and targets for the medical treatment of brain and other end-organ injuries.


Assuntos
Lesões Encefálicas/genética , Lesões Encefálicas/prevenção & controle , Animais , Sequência de Bases , Lesões Encefálicas/etiologia , Lesões Encefálicas/terapia , Isquemia Encefálica/etiologia , Isquemia Encefálica/genética , Isquemia Encefálica/prevenção & controle , Isquemia Encefálica/terapia , DNA Complementar/genética , Modelos Animais de Doenças , Expressão Gênica , Proteínas de Choque Térmico/genética , Humanos , Técnicas In Vitro , Proteína Antagonista do Receptor de Interleucina 1 , Interleucina-1/biossíntese , Interleucina-1/genética , Precondicionamento Isquêmico , Masculino , Modelos Neurológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos SHR , Sialoglicoproteínas/biossíntese , Sialoglicoproteínas/genética , Transdução de Sinais
17.
Methods Mol Med ; 104: 3-16, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15454662

RESUMO

Translation of the explosion in knowledge of acute ischemic stroke into satisfactory treatment regimens has yet to happen. At present tPA, intra-arterial prourokinase and low-molecular-weight heparin form the vanguard for therapeutic intervention, yet these treatments have a limited therapeutic window. Part of this expansion in understanding has been driven by the contribution of stroke genetics and genomics. However, despite the enormous preclinical and clinical information of receptors, enzymes, second messenger systems, and so forth, that are implicated in stroke pathophysiology, delivery of novel drug treatment has been slow. This introductory chapter discusses the multiple sources of clinical and preclinical genetic information. It will describe the importance of integrating expression information into multiple preclinical models with temporal and spatial roles in lesion pathology and, furthermore developing an understanding of function in the clinic before claiming a role in ischemic stroke. The goal of such a holistic integration of information is to increase the yield from current datasets of gene expression and ultimately to help expand the choice of treatment available to the physician and patient.


Assuntos
Acidente Vascular Cerebral/genética , Animais , Modelos Animais de Doenças , Expressão Gênica , Genômica , Humanos , Proteínas/genética , Ratos , Fatores de Risco , Estudos em Gêmeos como Assunto
18.
Cardiovasc Res ; 53(2): 414-22, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11827692

RESUMO

BACKGROUND: In vitro evidence suggests that the p38 mitogen-activated protein kinase (p38 MAPK) plays a crucial role in PMN activation and inflammatory cytokine production. However, the effect of p38 MAPK on myocardial reperfusion injury, a pathologic condition involving a typical inflammatory response, has not been fully examined. In the present study, we investigated the effect of SB 239063, a specific p38 MAPK inhibitor, on myocardial injury in a murine ischemia/reperfusion (I/R) model and elucidated the mechanism by which p38 MAPK inhibitor may exert its protective effect against I/R injury. METHODS AND RESULTS: I/R resulted in a significant myocardial injury (myocardial infarct 45 +/- 2.9%) and marked PMN accumulation (myeloperoxidase activity 1.03 +/- 0.16 U/100 g tissue). Administration of SB 239063 significantly inhibited the myocardial inflammatory response as evidenced by reduced PMN accumulation in I/R myocardial tissue (0.62 +/- 0.008 U/100 g tissue, P<0.01 vs. vehicle), and markedly attenuated myocardial reperfusion injury (myocardial infarct size: 28 +/- 2.4%, P<0.01 vs. vehicle). Moreover, treatment with SB 239063 significantly attenuated I/R-induced P-selectin and ICAM-1 upregulation (13.8 +/- 2.7 vs. 23.9 +/- 3.1%, and 29.4 +/- 1.6 vs. 56.3 +/- 4.8%, respectively P<0.01). In addition, pre-treatment with R15.7, a monoclonal antibody against CD 18 adhesion molecule on PMN surface that virtually abolished PMN accumulation in ischemic-reperfused myocardial tissue, significantly, but not completely, blocked the cardioprotection exerted by SB 239063. CONCLUSION: These results demonstrated for the first time that p38 MAPK activation plays a significant role in adhesion molecule upregulation on ischemia-reperfused endothelial cells and is an important signaling step in the pathogenesis of PMN-mediated tissue injury.


Assuntos
Endotélio Vascular/metabolismo , Imidazóis/farmacologia , Molécula 1 de Adesão Intercelular/análise , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Pirimidinas/farmacologia , Transdução de Sinais , Análise de Variância , Animais , Masculino , Proteínas Quinases Ativadas por Mitógeno/análise , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/imunologia , Neutrófilos/fisiologia , Selectina-P/análise , Peroxidase/análise , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Proteínas Quinases p38 Ativadas por Mitógeno
19.
BMC Res Notes ; 8: 808, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26689288

RESUMO

BACKGROUND: The choice of an animal model for cerebrovascular research is often determined by the disease subtype to be studied (e.g. ischemic stroke, hemorrhage, trauma), as well as the nature of the intervention to be tested (i.e. medical device or pharmaceutical). Many initial studies are performed in smaller animals, as they are cost-effective and their encephalic vasculature closely models that of humans. Non-human primates are also utilized when confirmation or validation is required on higher levels and to test larger devices. However, working with primates is complex and expensive. Intermediate sized animal models, such as swine and sheep, may represent a valuable compromise. Their cerebrovascular anatomy, however, comes with challenges because of the natural higher external carotid artery perfusion and the existence of a rete mirabile. We describe a modification to the traditional swine cerebrovascular model that significantly enhances selective brain hemispheric perfusion, limiting external carotid perfusion and dilution. RESULTS: We investigated whether unilateral endovascular coil-embolization of external carotid artery branches in swine would lead to increased brain perfusion, altering cerebral circulation so that it more closely models human cerebral circulation. Equal amounts of approximately 4 °C cold saline were injected in 6 Yorkshire pigs into the ipsilateral common carotid artery before and after embolization. Hemispheric temperature changes from pre- and post-embolization were obtained as a measure of brain perfusion and averaged and compared using non-parametric statistical tests (Wilcoxon signed rank test, Mann-Whitney U Test). Graphs were plotted with absolute changes in hemispheric temperature over time to determine peak temperature drop (PTD) and corresponding time to peak (TTP) following the cold bolus injection. There was a 288 ± 90% increase in ipsilateral brain cooling after embolization indicating improved selective blood flow to the brain due to this vascular modification. CONCLUSION: We have developed an effective, selective vascular brain model in swine that may be useful as a practical and cost-reducing intermediate step for evaluating target dose-responses for central nervous system drugs and brain selective interventions, such as local hypothermia.


Assuntos
Artéria Carótida Externa , Circulação Cerebrovascular/fisiologia , Embolização Terapêutica/métodos , Animais , Modelos Animais de Doenças , Feminino
20.
Stroke ; 33(2): 578-85, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11823673

RESUMO

BACKGROUND AND PURPOSE: Although used clinically to prevent stroke, there are few examples of anticoagulant investigations in the treatment of acute thromboembolic stroke in animal models. The treatment of thromboembolic stroke in experimental models has been investigated almost exclusively around the use of tissue plasminogen activator (tPA). In this study, using a rat thromboembolic stroke model, we investigated the use of an inhibitory anti-factor IX(a) monoclonal antibody (SB 249417) for the treatment of thromboembolic stroke and compared its efficacy to that of tPA. METHODS: Stroke was initiated by delivering 6 clots into the internal carotid artery. After 2, 4, or 6 hours, rats received either intravenous vehicle, 10.0 mg/kg tPA, or 1.0, 2.0, or 3.0 mg/kg SB 249417. At 24 hours after stroke, infarct volumes and neurological deficits were assessed. RESULTS: Treatment with tPA 2, 4, or 6 hours after stroke reduced infarct volumes by 35% (P=NS), 45%, and 39%, respectively. tPA treatment did not improve neurological deficits at any time point. Treatment with SB 249417 (3.0 mg/kg) 2, 4, or 6 hours after stroke reduced infarct volumes by 44%, 50%, and 13% (P=NS), respectively. Neurological deficits were reduced by 49%, 42%, and 13% (P=NS), respectively. Neither mortality nor hemorrhage was affected by either treatment. CONCLUSIONS: The data indicate that the inhibition of factor IX(a) within 4 hours of thromboembolic stroke produced a more favorable outcome than tPA. When treatment was initiated 6 hours after stroke, the benefits of factor IX(a) inhibition were lost, whereas tPA continued to suppress lesion development, albeit without a corresponding improvement in functional deficits. This study suggests that cerebral ischemia and the resultant perfusion deficit are exacerbated by the activation of blood coagulation and that anticoagulants like SB 249417 may find utility in the treatment of ischemic stroke.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Fator IXa/antagonistas & inibidores , Fibrinolíticos/uso terapêutico , Acidente Vascular Cerebral/terapia , Tromboembolia/terapia , Doença Aguda , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Progressão da Doença , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Exame Neurológico , Ativadores de Plasminogênio/uso terapêutico , Prosencéfalo/irrigação sanguínea , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/patologia , Ratos , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/fisiopatologia , Taxa de Sobrevida , Tromboembolia/complicações , Tromboembolia/patologia , Fatores de Tempo , Ativador de Plasminogênio Tecidual/uso terapêutico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA