Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Anal Bioanal Chem ; 415(27): 6663-6675, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37714972

RESUMO

Sample preparation of complex, natural mixtures such as lignin prior to mass spectrometry analysis, however minimal, is a critical step in ensuring accurate and interference-free results. Modern shotgun-MS techniques, where samples are directly injected into a high-resolution mass spectrometer (HRMS) with no prior separation, usually still require basic sample pretreatment such as filtration and appropriate solvents for full dissolution and compatibility with atmospheric pressure ionization interfaces. In this study, sample preparation protocols have been established for a unique sample set consisting of a wide variety of degraded lignin samples from numerous sources and treatment processes. The samples were analyzed via electrospray (ESI)-HRMS in negative and positive ionization modes. The resulting information-rich HRMS datasets were then transformed into the mass defect space with custom R scripts as well as the open-source Constellation software as an effective way to visualize changes between the samples due to the sample preparation and ionization conditions as well as a starting point for comprehensive characterization of these varied sample sets. Optimized conditions for the four investigated lignins are proposed for ESI-HRMS analysis for the first time, giving an excellent starting point for future studies seeking to better characterize and understand these complex mixtures.

2.
Regul Toxicol Pharmacol ; 137: 105310, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36473579

RESUMO

Products of petroleum refining are substances that are both complex and variable. These substances are produced and distributed in high volumes; therefore, they are heavily scrutinized in terms of their potential hazards and risks. Because of inherent compositional complexity and variability, unique challenges exist in terms of their registration and evaluation. Continued dialogue between the industry and the decision-makers has revolved around the most appropriate approach to fill data gaps and ensure safe use of these substances. One of the challenging topics has been the extent of chemical compositional characterization of products of petroleum refining that may be necessary for substance identification and hazard evaluation. There are several novel analytical methods that can be used for comprehensive characterization of petroleum substances and identification of most abundant constituents. However, translation of the advances in analytical chemistry to regulatory decision-making has not been as evident. Therefore, the goal of this review is to bridge the divide between the science of chemical characterization of petroleum and the needs and expectations of the decision-makers. Collectively, mutual appreciation of the regulatory guidance and the realities of what information these new methods can deliver should facilitate the path forward in ensuring safety of the products of petroleum refining.


Assuntos
Petróleo , Petróleo/toxicidade
3.
Anal Chem ; 94(12): 4954-4960, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35286808

RESUMO

Sample preparation and instrument parameters have regularly been demonstrated to impact upon the observed results in atmospheric pressure photoionization, mass spectrometry (MS), and analytical techniques in general but may be overlooked when such methods are applied to the characterization of real-world samples. An initial investigation into different solvent systems demonstrated that the inclusion of ethyl acetate inverted the ratio of relative intensities of radical and protonated species (R/P). Design of experiments was performed and indicated that the injection flow rate is also a significant factor. The impact of the solvent system and flow rate on signal intensity, the observed compositional profile, and R/P of selected molecular groups is demonstrated further. An inversion of R/P is observed at higher flow rates in solvent systems commonly used in petroleomics studies, effecting a loss of molecular speciation. The findings presented reiterate the critical importance in considering experimental parameters when interpreting the results of analytical procedures.


Assuntos
Pressão Atmosférica , Espectrometria de Massas/métodos , Solventes/química
4.
Anal Chem ; 94(45): 15631-15638, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36317856

RESUMO

Ultraviolet photodissociation is a fast, photon-mediated fragmentation method that yields high sequence coverage and informative cleavages of biomolecules. In this work, 193 nm UVPD was coupled with a 12 Tesla FT-ICR mass spectrometer and 10.6 µm infrared multi-photon dissociation to provide gentle slow-heating of UV-irradiated ions. No internal instrument hardware modifications were required. Adjusting the timing of laser pulses to the ion motion within the ICR cell provided consistent fragmentation yield shot-to-shot and may also be used to monitor ion positions within the ICR cell. Single-pulse UVPD of the native-like 5+ charge state of ubiquitin resulted in 86.6% cleavage coverage. Additionally, IR activation post UVPD doubled the overall fragmentation yield and boosted the intensity of UVPD-specific x-type fragments up to 4-fold. This increased yield effect was also observed for the 6+ charge state of ubiquitin, albeit less pronounced. This indicates that gentle slow-heating serves to sever tethered fragments originating from non-covalently linked compact structures and makes activation post UVPD an attractive option to boost fragmentation efficiency for top-down studies. Lastly, UVPD was implemented and optimized as a fragmentation method for 2DMS, a data-independent acquisition method. UVPD-2DMS was demonstrated to be a viable method using BSA digest peptides as a model system.


Assuntos
Espectrometria de Massas em Tandem , Raios Ultravioleta , Espectrometria de Massas em Tandem/métodos , Íons , Peptídeos , Ubiquitina
5.
Anal Chem ; 94(21): 7536-7544, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35576165

RESUMO

Bio-oils are precursors for biofuels but are highly corrosive necessitating further upgrading. Furthermore, bio-oil samples are highly complex and represent a broad range of chemistries. They are complex mixtures not simply because of the large number of poly-oxygenated compounds but because each composition can comprise many isomers with multiple functional groups. The use of hyphenated ultrahigh-resolution mass spectrometry affords the ability to separate isomeric species of complex mixtures. Here, we present for the first time, the use of this powerful analytical technique combined with chemical reactivity to gain greater insights into the reactivity of the individual isomeric species of bio-oils. A pyrolysis bio-oils and its esterified bio-oil were analyzed using gas chromatography coupled to Fourier transform ion cyclotron resonance mass spectrometry, and in-house software (KairosMS) was used for fast comparison of the hyphenated data sets. The data revealed a total of 10,368 isomers in the pyrolysis bio-oil and an increase to 18,827 isomers after esterification conditions. Furthermore, the comparison of the isomeric distribution before and after esterification provide new light on the reactivities within these complex mixtures; these reactivities would be expected to correspond with carboxylic acid, aldehyde, and ketone functional groups. Using this approach, it was possible to reveal the increased chemical complexity of bio-oils after upgrading and target detection of valuable compounds within the bio-oils. The combination of chemical reactions alongside with in-depth molecular characterization opens a new window for the understanding of the chemistry and reactivity of complex mixtures.


Assuntos
Óleos de Plantas , Polifenóis , Biocombustíveis/análise , Biomassa , Misturas Complexas , Cromatografia Gasosa-Espectrometria de Massas , Temperatura Alta , Óleos de Plantas/química , Polifenóis/química
6.
Anal Chem ; 93(27): 9462-9470, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34192872

RESUMO

Ultraviolet photodissociation (UVPD) has been shown to produce extensive structurally informative data for a variety of chemically diverse compounds. Herein, we demonstrate the performance of the 193 nm UVPD fragmentation technique on structural/moiety characterization of 14 singly charged agrochemicals. Two-dimensional mass spectrometry (2DMS) using infrared multiphoton dissociation (IRMPD) and electron-induced dissociation (EID) have previously been applied to a select range of singly charged pesticides. The ≥80% moiety coverage achieved for the majority of the species by the UVPD and 2D-UVPD methods was on par with and, in some cases, superior to the data obtained by other fragmentation techniques in previous studies, demonstrating that UVPD is viable for these types of species. A three-dimensional (3D) peak picking method was implemented to extract the data from the 2DMS spectrum, overcoming the limitations of the line extraction method used in previous studies, successfully separating precursor specific fragments with milli-Dalton accuracy. Whole spectrum internal calibration combined with 3D peak picking obtained sub-part-per-million (ppm) to part-per-billion (ppb) mass accuracies across the entire 2DMS spectrum.


Assuntos
Agroquímicos , Elétrons , Espectrometria de Massas , Raios Ultravioleta
7.
Anal Chem ; 92(17): 11687-11695, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32700900

RESUMO

Analysis of agrochemicals in an environmental matrix is challenging because these samples contain multiple agrochemicals, their metabolites, degradation products, and endogenous compounds. The analysis of such complex samples is achieved using chromatographic separation techniques coupled to mass spectrometry. Herein, we demonstrate a two-dimensional mass spectrometry (2DMS) technique on a 12 T Fourier transform ion cyclotron resonance mass spectrometer that can analyze a mixture of agrochemicals without using chromatography or quadrupole isolation in a single experiment. The resulting 2DMS contour plot contains abundant tandem MS information for each component in the sample and correlates product ions to their corresponding precursor ions. Two different fragmentation methods are employed, infrared multiphoton dissociation (IRMPD) and electron-induced dissociation (EID), with 2DMS to analyze the mixture of singly charged agrochemicals. The product ions of one of the agrochemicals, pirimiphos-methyl, present in the sample was used to internally calibrate the entire 2DMS spectrum, achieving sub part per million (ppm) to part per billion (ppb) mass accuracies for all species analyzed. The work described in this study will show the advantages of the 2DMS approach, by grouping species with common fragments/core structure and mutual functional groups, using precursor lines and neutral loss lines. In addition, the rich spectral information obtained from IRMPD and EID 2DMS contour plots can accurately identify and characterize agrochemicals.


Assuntos
Agroquímicos/química , Espectrofotometria Infravermelho/métodos , Espectrometria de Massas em Tandem/métodos , Elétrons , Humanos
8.
Anal Chem ; 92(19): 12852-12859, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32902957

RESUMO

The structure and sequence elucidation of complex homo- and copolymers is key for further understanding polymers, polymer synthesis, and polymer interactions in biological processes. In this contribution, poly(dimethylacrylamide) homo- and dimethylacrylamide/4-acryloylmorpholine block copolymers were synthesized and analyzed by electron capture dissociation (ECD) and Fourier transform ion cyclotron resonance (FT-ICR) tandem mass spectrometry. Double-resonance experiments were carried out, providing a better understanding of the fragmentation process. A novel radical dissociation process is presented, and electron capture caused a specific cleavage at the terminal butyl-trithiocarbonate group, which initiated a free radical dissociation process.

9.
Anal Chem ; 92(10): 6817-6821, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32286050

RESUMO

Detection and characterization of phosphopeptides by infrared multiphoton dissociation two-dimensional mass spectrometry (IRMPD 2DMS) is shown to be particularly effective. A mixture of phosphopeptides was analyzed by 2DMS without any prior separation. 2DMS enables the data independent analysis of the mixture and the correlation of the fragments to their precursor ions. The extraction of neutral loss lines corresponding to the loss of phosphate under IRMPD fragmentation allows the selective identification of phosphopeptides. Resonance of the 10.6 µm infrared radiation with the vibrational modes of the phosphate functional group produced efficient absorption and high cleavage coverage of the phosphopeptides at much lower irradiation fluence than for nonphosphorylated peptides improving discrimination. Additionally, the localization of the phosphate group was determined.


Assuntos
Fosfopeptídeos/análise , Espectrometria de Massas , Fosforilação
10.
Anal Chem ; 92(5): 3775-3786, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-31990191

RESUMO

The use of hyphenated Fourier transform mass spectrometry (FTMS) methods affords additional information about complex chemical mixtures. Coeluted components can be resolved thanks to the ultrahigh resolving power, which also allows extracted ion chromatograms (EICs) to be used for the observation of isomers. As such data sets can be large and data analyses laborious, improved tools are needed for data analyses and extraction of key information. The typical workflow for this type of data is based upon manually dividing the total ion chromatogram (TIC) into several windows of usually equal retention time, averaging the signal of each window to create a single mass spectrum, extracting a peak list, performing the compositional assignments, visualizing the results, and repeating the process for each window. Through removal of the need to manually divide a data set into many time windows and analyze each one, a time-consuming workflow has been significantly simplified. An environmental sample from the oil sands region of Alberta, Canada, and dissolved organic matter samples from the Suwannee River Fulvic Acid (SRFA) and marine waters (Marine DOM) were used as a test bed for the new method. A complete solution named KairosMS was developed in the R language utilizing the Tidyverse packages and Shiny for the user interface. KairosMS imports raw data from common file types, processes it, and exports a mass list for compositional assignments. KairosMS then incorporates those assignments for analysis and visualization. The present method increases the computational speed while reducing the manual work of the analysis when compared to other current methods. The algorithm subsequently incorporates the assignments into the processed data set, generating a series of interactive plots, EICs for individual components or entire compound classes, and can export raw data or graphics for off-line use. Using the example of petroleum related data, it is then visualized according to heteroatom class, carbon number, double bond equivalents, and retention time. The algorithm also gives the ability to screen for isomeric contributions and to follow homologous series or compound classes, instead of individual components, as a function of time.

11.
Anal Chem ; 92(4): 3143-3151, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31909982

RESUMO

Investigating the structure of active ingredients, such as agrochemicals and their associated metabolites, is a crucial requisite in the discovery and development of these molecules. In this study, structural characterization by electron-induced dissociation (EID) was compared to collisionally activated dissociation (CAD) on a series of agrochemicals. EID fragmentation produced a greater variety of fragment ions and complementary ion pairs leading to more complete functional group characterization compared to CAD. The results obtained displayed many more cross-ring fragmentation of the pyrimidine ring compared to the pyridine ring. Compounds that consisted of one aromatic heterocyclic moiety (azoxystrobin, fluazifop acid, fluazifop-p-butyl, and pirimiphos-methyl) displayed cross-ring fragmentation while compounds with only aromatic hydrocarbon rings (fenpropidin and S-metolachlor) displayed no cross-ring fragmentation. The advantages of high-resolution accurate mass spectrometry (HRAM MS) are shown with the majority of assignments at ppb range error values and the ability to differentiate ions with the same nominal mass but different elemental composition. This highlights the potential for HRAM MS and EID to be used as a tool for structural characterization of small molecules with a wide variety of functional groups and structural motifs.

12.
Analyst ; 145(9): 3414-3423, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32254686

RESUMO

Six essential oils were analyzed by Fourier transform ion cyclotron resonance mass spectrometry coupled to negative-ion electrospray ionization (ESI(-)/FT-ICR MS). ESI offers selective ionization of a compound's polar functional groups containing nitrogen and oxygen heteroatoms. ESI in negative-ion mode allows the identification of the acidic compounds. The results showed that the samples contain between 1100-3600 individual molecular compositions, which corresponds to the greatest number of species detected to date in essential oils obtained from aromatic plant material. The compositions cover a mass range between m/z 150-500 with up to 41 carbon atoms. The dominant organic constituents of the essential oils correspond to species incorporating 2-5 oxygen atoms, detected as deprotonated/sodiated/chlorinated species. A set of 580 molecular assignments were found in common across all the samples and for the first time, a set of unique molecular systems were identified, and up to 1373 species as a unique composition for each essential oil. The molecular distributions plotted in van Krevelen diagrams (classified by their H/C vs. O/C values) suggest the presence of species with long alkyl chains and low numbers of rings plus double bonds.

13.
Anal Chem ; 91(23): 15130-15137, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31664818

RESUMO

Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) provides the resolution and mass accuracy needed to analyze complex mixtures such as crude oil. When mixtures contain many different components, a competitive effect within the ICR cell takes place that hampers the detection of a potentially large fraction of the components. Recently, a new data collection technique, which consists of acquiring several spectra of small mass ranges and assembling a complete spectrum afterward, enabled the observation of a record number of peaks with greater accuracy compared to broadband methods. There is a need for statistical methods to combine and preprocess segmented acquisition data. A particular challenge of quadrupole isolation is that near the window edges there is a drop in intensity, hampering the stitching of consecutive windows. We developed an algorithm called Rhapso to stitch peak lists corresponding to multiple different m/z regions from crude oil samples. Rhapso corrects potential edge effects to enable the use of smaller windows and reduce the required overlap between windows, corrects mass shifts between windows, and generates a single peak list for the full spectrum. Relative to a stitching performed manually, Rhapso increased the data processing speed and avoided potential human errors, simplifying the subsequent chemical analysis of the sample. Relative to a broadband spectrum, the stitched output showed an over 2-fold increase in assigned peaks and reduced mass error by a factor of 2. Rhapso is expected to enable routine use of this spectral stitching method for ultracomplex samples, giving a more detailed characterization of existing samples and enabling the characterization of samples that were previously too complex to analyze.

14.
Analyst ; 144(5): 1575-1581, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30663751

RESUMO

The most widely used anticancer drugs are platinum complexes, but complexes of other transition metals also show promise and may widen the spectrum of activity, reduce side-effects, and overcome resistance. The latter include organo-iridium(iii) 'piano-stool' complexes. To understand their mechanism of action, it is important to discover how they bind to biomolecules and how binding is affected by functionalisation of the ligands bound to iridium. We have characterised, by MS and MS/MS techniques, unusual adducts from reactions between 3 novel iridium(iii) anti-cancer complexes each possessing reactive sites both at the metal (coordination by substitution of a labile chlorido ligand) and on the ligand (covalent bond formation involving imine formation by one or two aldehyde functions). Peptide modification by the metal complex had a drastic effect on both Collisonally Activated Dissociation (CAD) and Electron Capture Dissociation (ECD) MS/MS behaviour, tuning requirements, and fragmentation channels. CAD MS/MS was effective only when studying the covalent condensation products. ECD MS/MS, although hindered by electron-quenching at the Iridium complex site, was suitable for studying many of the species observed, locating the modification sites, and often identifying them to within a single amino acid residue.

15.
Anal Chem ; 90(12): 7302-7309, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29792683

RESUMO

Two-dimensional mass spectrometry (2DMS) allows data independent fragmentation of all ions in a sample and correlation of fragment ions to their precursors without isolation prior to fragmentation. Developments in computer capabilities and implementations in Fourier transform ion cyclotron resonance (FTICR) MS over the past decade have allowed the technique to become a useful analytical tool for bottom-up proteomics (BUP) and, more recently, in top-down protein analysis (TDP). In this work, a new method of TDP is developed using 2D FTICR MS, called MS/2D FTICR MS or MS/2DMS. In MS/2DMS, an entire protein is initially fragmented in a hexapole collision cell, e.g., with collisionally activated dissociation (CAD). The primary fragments are then sent to the ICR cell, where 2DMS is performed with infrared multiphoton dissociation (IRMPD) or electron-capture dissociation (ECD). The resulting 2D mass spectra retain information equivalent to a set of TDP MS3 experiments on the selected protein. Up to n - 1 fragmentation steps can be added to the process, as long as an ion of interest can be unambiguously fragmented before the ICR cell, leading to an MS n/2DMS experiment whose output is a 2D mass spectrum retaining information equivalent to MS n. MS/2DMS and MS/MS/2DMS are used in this work for the structural analysis of ubiquitin (Ubi), noting several unique features which aid fragment identification. The use of CAD-MS/IRMPD-2DMS, CAD-MS/ECD-2DMS, and MS2/2DMS using, respectively, in-source dissociation (ISD), CAD, and ECD-2DMS led to 97% cleavage coverage for Ubi.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Espectrometria de Massas/métodos , Ubiquitina/química , Ciclotrons , Espectrometria de Massas/instrumentação , Estrutura Molecular , Proteômica/métodos , Ubiquitina/análise
16.
Anal Chem ; 90(19): 11710-11715, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30199232

RESUMO

With increasing focus on the structural elucidation of polymers, advanced tandem mass spectrometry techniques will play a crucial role in the characterization of these compounds. In this contribution, synthesis and analysis of methyl-initiated and xanthate-terminated poly(2-ethyl-2-oxazoline) using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) was achieved. Electron capture dissociation (ECD) produced full end group characterization as well as backbone fragmentation including complete sequence coverage of the polymer. A method of fragment ion characterization is also presented with the use of the high-resolution-modified Kendrick mass defect plots as a means of grouping fragments from the same fragmentation pathways together. This type of data processing is applicable to all tandem mass spectrometry techniques for polymer analysis but is made more effective with high mass accuracy methods. ECD FT-ICR MS demonstrates its promising role as a structural characterization technique for polyoxazoline species.

17.
Anal Chem ; 90(5): 3496-3504, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29420878

RESUMO

Two-dimensional mass spectrometry (2D MS) correlates precursor and fragment ions without ion isolation in a Fourier transform ion cyclotron resonance mass spectrometer (FTICR MS) for tandem mass spectrometry. Infrared activated electron capture dissociation (IR-ECD), using a hollow cathode configuration, generally yields more information for peptide sequencing in tandem mass spectrometry than ECD (electron capture dissociation) alone. The effects of the fragmentation zone on the 2D mass spectrum are investigated as well as the structural information that can be derived from it. The enhanced structural information gathered from the 2D mass spectrum is discussed in terms of how de novo peptide sequencing can be performed with increased confidence. 2D IR-ECD MS is shown to sequence peptides, to distinguish between leucine and isoleucine residues through the production of w ions as well as between C-terminal ( b/ c) and N-terminal ( y/ z) fragments through the use of higher harmonics, and to assign and locate peptide modifications.

18.
Proc Natl Acad Sci U S A ; 112(34): E4651-60, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26224837

RESUMO

Experimental evidence suggests that nitric oxide (NO) and hydrogen sulfide (H2S) signaling pathways are intimately intertwined, with mutual attenuation or potentiation of biological responses in the cardiovascular system and elsewhere. The chemical basis of this interaction is elusive. Moreover, polysulfides recently emerged as potential mediators of H2S/sulfide signaling, but their biosynthesis and relationship to NO remain enigmatic. We sought to characterize the nature, chemical biology, and bioactivity of key reaction products formed in the NO/sulfide system. At physiological pH, we find that NO and sulfide form a network of cascading chemical reactions that generate radical intermediates as well as anionic and uncharged solutes, with accumulation of three major products: nitrosopersulfide (SSNO(-)), polysulfides, and dinitrososulfite [N-nitrosohydroxylamine-N-sulfonate (SULFI/NO)], each with a distinct chemical biology and in vitro and in vivo bioactivity. SSNO(-) is resistant to thiols and cyanolysis, efficiently donates both sulfane sulfur and NO, and potently lowers blood pressure. Polysulfides are both intermediates and products of SSNO(-) synthesis/decomposition, and they also decrease blood pressure and enhance arterial compliance. SULFI/NO is a weak combined NO/nitroxyl donor that releases mainly N2O on decomposition; although it affects blood pressure only mildly, it markedly increases cardiac contractility, and formation of its precursor sulfite likely contributes to NO scavenging. Our results unveil an unexpectedly rich network of coupled chemical reactions between NO and H2S/sulfide, suggesting that the bioactivity of either transmitter is governed by concomitant formation of polysulfides and anionic S/N-hybrid species. This conceptual framework would seem to offer ample opportunities for the modulation of fundamental biological processes governed by redox switching and sulfur trafficking.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Óxidos de Nitrogênio/metabolismo , Sulfetos/metabolismo , Animais , Disponibilidade Biológica , Masculino , Nitrogênio/metabolismo , Ratos Wistar , Enxofre/metabolismo
19.
Anal Chem ; 89(21): 11383-11390, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28985049

RESUMO

Fourier transform ion cyclotron resonance mass spectrometry affords the resolving power to determine an unprecedented number of components in complex mixtures, such as petroleum. The software tools required to also analyze these data struggle to keep pace with advancing instrument capabilities and increasing quantities of data, particularly in terms of combining information efficiently across multiple replicates. Improved confidence in data and the use of replicates is particularly important where strategic decisions will be based upon the analysis. We present a new algorithm named Themis, developed using R, to jointly preprocess replicate measurements of a sample with the aim of improving consistency as a preliminary step to assigning peaks to chemical compositions. The main features of the algorithm are quality control criteria to detect failed runs, ensuring comparable magnitudes across replicates, peak alignment, and the use of an adaptive mixture model-based strategy to help distinguish true peaks from noise. The algorithm outputs a list of peaks reliably observed across replicates and facilitates data handling by preprocessing all replicates in a single step. The processed data produced by our algorithm can subsequently be analyzed by use of relevant specialized software. While Themis has been demonstrated with petroleum as an example of a complex mixture, its basic framework will be useful for complex samples arising from a variety of other applications.

20.
Anal Chem ; 89(18): 9892-9899, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28787150

RESUMO

Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2D FTICR MS or 2D MS) allows direct correlation between precursor and fragment ions without isolation prior to fragmentation. The method has been optimized for the analysis of complex mixtures and used so far for the analysis of small molecules and peptides obtained by tryptic digestion of proteins and entire proteins. In this work, a 2D MS method is developed to characterize complex mixtures of polymers using infrared multiphoton decay (IRMPD) and electron capture dissociation (ECD) as fragmentation techniques, and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), Polysorbate 80, and poly(methyl methacrylate) (PMMA) as analytes. The use of 2D MS allowed generation of fragment m/z values for all the compounds in the mixture at once and allowed tandem mass spectrometry of species very close in m/z that would have been difficult to isolate with a quadrupole for standard MS/MS. Furthermore, the use of unique features of 2D MS such as the extraction of neutral-loss lines allowed the successful assignment of peaks from low abundant species that would have been more difficult with standard MS/MS. For all the samples, the amount of information obtained with 2D MS was comparable with what obtained with multiple 1D MS/MS experiments targeted on each individual component within each mixture but required a single experiment of about 20-40 min.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA