Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Biol Toxicol ; 38(5): 781-807, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33969458

RESUMO

Due to their neurodevelopmental toxicity, flame retardants (FRs) like polybrominated diphenyl ethers are banned from the market and replaced by alternative FRs, like organophosphorus FRs, that have mostly unknown toxicological profiles. To study their neurodevelopmental toxicity, we evaluated the hazard of several FRs including phased-out polybrominated FRs and organophosphorus FRs: 2,2',4,4'-tetrabromodiphenylether (BDE-47), 2,2',4,4',5-pentabromodiphenylether (BDE-99), tetrabromobisphenol A, triphenyl phosphate, tris(2-butoxyethyl) phosphate and its metabolite bis-(2-butoxyethyl) phosphate, isodecyl diphenyl phosphate, triphenyl isopropylated phosphate, tricresyl phosphate, tris(1,3-dichloro-2-propyl) phosphate, tert-butylphenyl diphenyl phosphate, 2-ethylhexyl diphenyl phosphate, tris(1-chloroisopropyl) phosphate, and tris(2-chloroethyl) phosphate. Therefore, we used a human cell-based developmental neurotoxicity (DNT) in vitro battery covering a large variety of neurodevelopmental endpoints. Potency according to the respective most sensitive benchmark concentration (BMC) across the battery ranked from <1 µM (5 FRs), 1<10 µM (7 FRs) to the >10 µM range (3 FRs). Evaluation of the data with the ToxPi tool revealed a distinct ranking (a) than with the BMC and (b) compared to the ToxCast data, suggesting that DNT hazard of these FRs is not well predicted by ToxCast assays. Extrapolating the DNT in vitro battery BMCs to human FR exposure via breast milk suggests low risk for individual compounds. However, it raises a potential concern for real-life mixture exposure, especially when different compounds converge through diverse modes-of-action on common endpoints, like oligodendrocyte differentiation in this study. This case study using FRs suggests that human cell-based DNT in vitro battery is a promising approach for neurodevelopmental hazard assessment and compound prioritization in risk assessment.


Assuntos
Retardadores de Chama , Tritolil Fosfatos , Feminino , Humanos , Compostos de Bifenilo , Exposição Ambiental/análise , Retardadores de Chama/análise , Retardadores de Chama/toxicidade , Éteres Difenil Halogenados/análise , Técnicas In Vitro , Organofosfatos , Fosfatos/análise
2.
Front Toxicol ; 6: 1359507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742231

RESUMO

In the European regulatory context, rodent in vivo studies are the predominant source of neurotoxicity information. Although they form a cornerstone of neurotoxicological assessments, they are costly and the topic of ethical debate. While the public expects chemicals and products to be safe for the developing and mature nervous systems, considerable numbers of chemicals in commerce have not, or only to a limited extent, been assessed for their potential to cause neurotoxicity. As such, there is a societal push toward the replacement of animal models with in vitro or alternative methods. New approach methods (NAMs) can contribute to the regulatory knowledge base, increase chemical safety, and modernize chemical hazard and risk assessment. Provided they reach an acceptable level of regulatory relevance and reliability, NAMs may be considered as replacements for specific in vivo studies. The European Partnership for the Assessment of Risks from Chemicals (PARC) addresses challenges to the development and implementation of NAMs in chemical risk assessment. In collaboration with regulatory agencies, Project 5.2.1e (Neurotoxicity) aims to develop and evaluate NAMs for developmental neurotoxicity (DNT) and adult neurotoxicity (ANT) and to understand the applicability domain of specific NAMs for the detection of endocrine disruption and epigenetic perturbation. To speed up assay time and reduce costs, we identify early indicators of later-onset effects. Ultimately, we will assemble second-generation developmental neurotoxicity and first-generation adult neurotoxicity test batteries, both of which aim to provide regulatory hazard and risk assessors and industry stakeholders with robust, speedy, lower-cost, and informative next-generation hazard and risk assessment tools.

3.
Cells ; 12(9)2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37174670

RESUMO

The currently accepted methods for neurotoxicity (NT) testing rely on animal studies. However, high costs and low testing throughput hinder their application for large numbers of chemicals. To overcome these limitations, in vitro methods are currently being developed based on human-induced pluripotent stem cells (hiPSC) that allow higher testing throughput at lower costs. We applied six different protocols to generate 3D BrainSphere models for acute NT evaluation. These include three different media for 2D neural induction and two media for subsequent 3D differentiation resulting in self-organized, organotypic neuron/astrocyte microtissues. All induction protocols yielded nearly 100% NESTIN-positive hiPSC-derived neural progenitor cells (hiNPCs), though with different gene expression profiles concerning regional patterning. Moreover, gene expression and immunocytochemistry analyses revealed that the choice of media determines neural differentiation patterns. On the functional level, BrainSpheres exhibited different levels of electrical activity on microelectrode arrays (MEA). Spike sorting allowed BrainSphere functional characterization with the mixed cultures consisting of GABAergic, glutamatergic, dopaminergic, serotonergic, and cholinergic neurons. A test method for acute NT testing, the human multi-neurotransmitter receptor (hMNR) assay, was proposed to apply such MEA-based spike sorting. These models are promising tools not only in toxicology but also for drug development and disease modeling.


Assuntos
Células-Tronco Neurais , Neurônios , Animais , Humanos , Células Cultivadas , Microeletrodos , Neurônios/metabolismo , Células-Tronco Neurais/metabolismo , Diferenciação Celular
4.
ALTEX ; 40(3): 452-470, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37158368

RESUMO

Proper brain development is based on the orchestration of key neurodevelopmental processes (KNDP), including the for­mation and function of neural networks. If at least one KNDP is affected by a chemical, an adverse outcome is expected. To enable a higher testing throughput than the guideline animal experiments, a developmental neurotoxicity (DNT) in vitro testing battery (DNT IVB) comprising a variety of assays that model several KNDPs was set up. Gap analysis revealed the need for a human-based assay to assess neural network formation and function (NNF). Therefore, we established the human NNF (hNNF) assay. A co-culture comprised of human induced pluripotent stem cell (hiPSC)-derived excitatory and inhibitory neurons as well as primary human astroglia was differentiated for 35 days on microelectrode arrays (MEA), and spontaneous electrical activity, together with cytotoxicity, was assessed on a weekly basis after washout of the compounds 24 h prior to measurements. In addition to the characterization of the test system, the assay was challenged with 28 com­pounds, mainly pesticides, identifying their DNT potential by evaluating specific spike-, burst-, and network parameters. This approach confirmed the suitability of the assay for screening environmental chemicals. Comparison of benchmark con­centrations (BMC) with an NNF in vitro assay (rNNF) based on primary rat cortical cells revealed differences in sensitivity. Together with the successful implementation of hNNF data into a postulated stressor-specific adverse outcome pathway (AOP) network associated with a plausible molecular initiating event for deltamethrin, this study suggests the hNNF assay as a useful complement to the DNT IVB.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndromes Neurotóxicas , Praguicidas , Humanos , Ratos , Animais , Células Cultivadas , Praguicidas/toxicidade , Neurônios/fisiologia , Síndromes Neurotóxicas/metabolismo
5.
ALTEX ; 40(4): 619-634, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37422925

RESUMO

In chemical safety assessment, benchmark concentrations (BMC) and their associated uncertainty are needed for the toxicological evaluation of in vitro data sets. A BMC estimation is derived from concentration-response modelling and results from various statistical decisions, which depend on factors such as experimental design and assay endpoint features. In current data practice, the experimenter is often responsible for the data analysis and therefore relies on statistical software, often without being aware of the software default settings and how they can impact the outputs of data analysis. To provide more insight into how statistical decision-making can influence the outcomes of data analysis and interpretation, we have developed an automated platform that includes statistical methods for BMC estimation, a novel endpoint-specific hazard classification system, and routines that flag data sets that are outside the applicability domain for an automatic data evaluation. We used case studies on a large dataset produced by a developmental neurotoxicity (DNT) in vitro battery (DNT IVB). Here we focused on the BMC and its confidence interval (CI) estimation as well as on final hazard classification. We identified five crucial statistical decisions the experimenter must make during data analysis: choice of replicate averaging, response data normalization, regression modelling, BMC and CI estimation, and choice of benchmark response levels. The insights gained are intended to raise more awareness among experimenters on the importance of statistical decisions and methods but also to demonstrate how important fit-for-purpose, internationally harmonized and accepted data evaluation and analysis procedures are for objective hazard classification.


Assuntos
Síndromes Neurotóxicas , Projetos de Pesquisa , Humanos , Bioestatística , Testes de Toxicidade/métodos , Benchmarking
6.
Chemosphere ; 311(Pt 2): 137035, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36328314

RESUMO

Developmental neurotoxicity (DNT) is a major safety concern for all chemicals of the human exposome. However, DNT data from animal studies are available for only a small percentage of manufactured compounds. Test methods with a higher throughput than current regulatory guideline methods, and with improved human relevance are urgently needed. We therefore explored the feasibility of DNT hazard assessment based on new approach methods (NAMs). An in vitro battery (IVB) was assembled from ten individual NAMs that had been developed during the past years to probe effects of chemicals on various fundamental neurodevelopmental processes. All assays used human neural cells at different developmental stages. This allowed us to assess disturbances of: (i) proliferation of neural progenitor cells (NPC); (ii) migration of neural crest cells, radial glia cells, neurons and oligodendrocytes; (iii) differentiation of NPC into neurons and oligodendrocytes; and (iv) neurite outgrowth of peripheral and central neurons. In parallel, cytotoxicity measures were obtained. The feasibility of concentration-dependent screening and of a reliable biostatistical processing of the complex multi-dimensional data was explored with a set of 120 test compounds, containing subsets of pre-defined positive and negative DNT compounds. The battery provided alerts (hit or borderline) for 24 of 28 known toxicants (82% sensitivity), and for none of the 17 negative controls. Based on the results from this screen project, strategies were developed on how IVB data may be used in the context of risk assessment scenarios employing integrated approaches for testing and assessment (IATA).

7.
Front Toxicol ; 4: 816370, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295221

RESUMO

There is a call for a paradigm shift in developmental neurotoxicity (DNT) evaluation, which demands the implementation of faster, more cost-efficient, and human-relevant test systems than current in vivo guideline studies. Under the umbrella of the Organisation for Economic Co-operation and Development (OECD), a guidance document is currently being prepared that instructs on the regulatory use of a DNT in vitro battery (DNT IVB) for fit-for-purpose applications. One crucial issue for OECD application of methods is validation, which for new approach methods (NAMs) requires novel approaches. Here, mechanistic information previously identified in vivo, as well as reported neurodevelopmental adversities in response to disturbances on the cellular and tissue level, are of central importance. In this study, we scientifically validate the Neurosphere Assay, which is based on human primary neural progenitor cells (hNPCs) and an integral part of the DNT IVB. It assesses neurodevelopmental key events (KEs) like NPC proliferation (NPC1ab), radial glia cell migration (NPC2a), neuronal differentiation (NPC3), neurite outgrowth (NPC4), oligodendrocyte differentiation (NPC5), and thyroid hormone-dependent oligodendrocyte maturation (NPC6). In addition, we extend our work from the hNPCs to human induced pluripotent stem cell-derived NPCs (hiNPCs) for the NPC proliferation (iNPC1ab) and radial glia assays (iNPC2a). The validation process we report for the endpoints studied with the Neurosphere Assays is based on 1) describing the relevance of the respective endpoints for brain development, 2) the confirmation of the cell type-specific morphologies observed in vitro, 3) expressions of cell type-specific markers consistent with those morphologies, 4) appropriate anticipated responses to physiological pertinent signaling stimuli and 5) alterations in specific in vitro endpoints upon challenges with confirmed DNT compounds. With these strong mechanistic underpinnings, we posit that the Neurosphere Assay as an integral part of the DNT in vitro screening battery is well poised for DNT evaluation for regulatory purposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA