Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Rep ; 43(3): 113831, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38401121

RESUMO

Cancer immunotherapies have demonstrated remarkable success; however, the majority of patients do not respond or develop resistance. Here, we conduct epigenetic gene-targeted CRISPR-Cas9 screens to identify epigenomic factors that limit CD8+ T cell-mediated anti-tumor immunity. We identify that PRMT1 suppresses interferon gamma (Ifnγ)-induced MHC-I expression, thus dampening CD8+ T cell-mediated killing. Indeed, PRMT1 knockout or pharmacological targeting of type I PRMT with the clinical inhibitor GSK3368715 enhances Ifnγ-induced MHC-I expression through elevated STAT1 expression and activation, while re-introduction of PRMT1 in PRMT1-deficient cells reverses this effect. Importantly, loss of PRMT1 enhances the efficacy of anti-PD-1 immunotherapy, and The Cancer Genome Atlas analysis reveals that PRMT1 expression in human melanoma is inversely correlated with expression of human leukocyte antigen molecules, infiltration of CD8+ T cells, and overall survival. Taken together, we identify PRMT1 as a negative regulator of anti-tumor immunity, unveiling clinical type I PRMT inhibitors as immunotherapeutic agents or as adjuncts to existing immunotherapies.


Assuntos
Linfócitos T CD8-Positivos , Melanoma , Humanos , Linfócitos T CD8-Positivos/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Imunidade Celular , Interferon gama/metabolismo , Melanoma/patologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
2.
Cell Rep ; 43(7): 114392, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38944836

RESUMO

Heterogeneous resistance to immunotherapy remains a major challenge in cancer treatment, often leading to disease progression and death. Using CITE-seq and matched 40-plex PhenoCycler tissue imaging, we performed longitudinal multimodal single-cell analysis of tumors from metastatic melanoma patients with innate resistance, acquired resistance, or response to immunotherapy. We established the multimodal integration toolkit to align transcriptomic features, cellular epitopes, and spatial information to provide deeper insights into the tumors. With longitudinal analysis, we identified an "immune-striving" tumor microenvironment marked by peri-tumor lymphoid aggregates and low infiltration of T cells in the tumor and the emergence of MITF+SPARCL1+ and CENPF+ melanoma subclones after therapy. The enrichment of B cell-associated signatures in the molecular composition of lymphoid aggregates was associated with better survival. These findings provide further insights into the establishment of microenvironmental cell interactions and molecular composition of spatial structures that could inform therapeutic intervention.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Imunoterapia , Melanoma , Análise de Célula Única , Microambiente Tumoral , Microambiente Tumoral/imunologia , Humanos , Imunoterapia/métodos , Melanoma/terapia , Melanoma/imunologia , Melanoma/patologia , Multiômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA