Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 13(1)2023 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-38201244

RESUMO

BACKGROUND: The healing of a bone injury is a highly complex process involving a multitude of different tissue and cell types, including immune cells, which play a major role in the initiation and progression of bone regeneration. METHODS: We histologically analyzed the spatio-temporal occurrence of cells of the innate immune system (macrophages), the adaptive immune system (B and T lymphocytes), and bone cells (osteoblasts and osteoclasts) in the fracture area of a femoral osteotomy over the healing time. This study was performed in a bone osteotomy gap mouse model. We also investigated two key challenges of successful bone regeneration: hypoxia and revascularization. RESULTS: Macrophages were present in and around the fracture gap throughout the entire healing period. The switch from initially pro-inflammatory M1 macrophages to the anti-inflammatory M2 phenotype coincided with the revascularization as well as the appearance of osteoblasts in the fracture area. This indicates that M2 macrophages are necessary for the restoration of vessels and that they also play an orchestrating role in osteoblastogenesis during bone healing. The presence of adaptive immune cells throughout the healing process emphasizes their essential role for regenerative processes that exceeds a mere pathogen defense. B and T cells co-localize consistently with bone cells throughout the healing process, consolidating their crucial role in guiding bone formation. These histological data provide, for the first time, comprehensive information about the complex interrelationships of the cellular network during the entire bone healing process in one standardized set up. With this, an overall picture of the spatio-temporal interplay of cellular key players in a bone healing scenario has been created. CONCLUSIONS: A spatio-temporal distribution of immune cells, bone cells, and factors driving bone healing at time points that are decisive for this process-especially during the initial steps of inflammation and revascularization, as well as the soft and hard callus phases-has been visualized. The results show that the bone healing cascade does not consist of five distinct, consecutive phases but is a rather complex interrelated and continuous process of events, especially at the onset of healing.


Assuntos
Consolidação da Fratura , Fraturas Ósseas , Animais , Camundongos , Osteócitos , Osteoblastos , Regeneração Óssea
2.
Clin Infect Dis ; 40(1): 28-37, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15614689

RESUMO

BACKGROUND: Because of changes in gut physiology, immune system reactivity, and diet, elderly people are more susceptible to gastrointestinal infections than are younger adults. The gut microflora, which provides a natural defense against invading microorganisms, changes in elderly people with the development of potentially damaging bacterial populations, which may lead to alterations in bacterial metabolism and higher levels of infection. METHODS: A randomized, double-blind, controlled feeding trial was done with 18 healthy elderly volunteers (age, >62 years) using a synbiotic comprising Bifidobacterium bifidum BB-02 and Bifidobacterium lactis BL-01 (probiotics) together with an inulin-based prebiotic (Synergy 1; Orafti). Real-time PCR was employed to quantitate total bifidobacteria, B. bifidum, and B. lactis in fecal DNA before, during, and after synbiotic consumption. Counting all viable anaerobes, bifidobacteria, and lactobacilli and identification of bacterial isolates to species level was also done. RESULTS: Throughout feeding, both bifidobacteria species were detected in fecal samples obtained from all subjects receiving the synbiotic, with significant increases in the number of copies of the 16S rRNA genes of B. bifidum, B. lactis, and total bifidobacteria, compared with the control week and the placebo group. At least 1 of these species remained detectable in fecal samples 3 weeks after feeding in individuals that had no fecal B. bifidum and/or B. lactis in the control week, indicating that the probiotics persisted in the volunteers. Counting of viable organisms showed significantly higher total numbers of fecal bifidobacteria, total numbers of lactobacilli, and numbers of B. bifidum during synbiotic feeding. CONCLUSION: Synbiotic consumption increased the size and diversity of protective fecal bifidobacterial populations, which are often very much reduced in older people.


Assuntos
Bifidobacterium/fisiologia , Oligossacarídeos/farmacologia , Reação em Cadeia da Polimerase/métodos , Probióticos/farmacologia , Idoso , Contagem de Colônia Microbiana , Método Duplo-Cego , Fezes/microbiologia , Humanos , Pessoa de Meia-Idade , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética
3.
Appl Environ Microbiol ; 70(6): 3575-81, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15184159

RESUMO

Fecal bacteria were studied in healthy elderly volunteers (age, 63 to 90 years; n = 35) living in the local community, elderly hospitalized patients (age, 66 to 103; n = 38), and elderly hospitalized patients receiving antibiotic treatment (age, 65 to 100; n = 21). Group- and species-specific primer sets targeting 16S rRNA genes were used to quantitate intestinal bacteria by using DNA extracted from feces and real-time PCR. The principal difference between healthy elderly volunteers and both patient cohorts was a marked reduction in the Bacteroides-Prevotella group following hospitalization. Reductions in bifidobacteria, Desulfovibrio spp., Clostridium clostridiiforme, and Faecalibacterium prausnitzii were also found in the hospitalized patients. However, total 16S rRNA gene copy numbers (per gram of wet weight of feces) were generally lower in the stool samples of the two groups of hospitalized patients compared to the number in the stool samples of elderly volunteers living in the community, so the relative abundance (percentage of the group- and species-specific rRNA gene copies in relation to total bacterial rRNA gene copies) of bifidobacteria, Desulfovibrio spp., C. clostridiiforme, and F. prausnitzii did not change. Antibiotic treatment resulted in further reductions in the numbers of bacteria and their prevalence and, in some patients, complete elimination of certain bacterial communities. Conversely, the numbers of enterobacteria increased in the hospitalized patients who did not receive antibiotics, and due to profound changes in fecal microbiotas during antibiotic treatment, the opportunistic species Enterococcus faecalis proliferated.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Infecções Bacterianas/microbiologia , Ecossistema , Fezes/microbiologia , Hospitalização , Reação em Cadeia da Polimerase/métodos , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Bactérias/genética , Infecções Bacterianas/tratamento farmacológico , Primers do DNA , DNA Bacteriano/análise , DNA Ribossômico/análise , Dosagem de Genes , Genes de RNAr , Humanos , RNA Ribossômico 16S/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA