Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36615547

RESUMO

In this study, a new series of phosphors, Ca9−xZnxGd0.9(PO4)7:0.1Eu3+ (x = 0.00−1.00, step dx 0.05), was synthesized, consisting of centro- and non-centrosymmetric phases with ß-Ca3(PO4)2-type structure. Crystal structures with space groups R3c (0.00 ≤ x < 0.35) and R3¯c (x > 0.8) were determined using X-ray powder diffraction and the method of optical second harmonic generation. In the region 0.35 ≤ x ≤ 0.75, phases R3c and R3¯c were present simultaneously. Refinement of the Ca8ZnGd(PO4)7 crystal structure with the Rietveld method showed that 71% of Gd3+ ions are in M3 sites and 29% are in M1 sites. A luminescent spectroscopy study of Ca9−xZnxGd0.9(PO4)7:0.1Eu3+ indicated the energy transfer from the crystalline host to the Gd3+ and Eu3+ luminescent centers. The maximum Eu3+ luminescence intensity corresponds to the composition with x = 1.


Assuntos
Substâncias Luminescentes , Substâncias Luminescentes/química , Európio/química , Luminescência , Íons , Zinco
2.
Biomimetics (Basel) ; 9(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38667262

RESUMO

ß-tricalcium phosphate (ß-TCP) is a promising material in regenerative traumatology for the creation of bone implants. Previously, it was established that doping the structure with certain cations can reduce the growth of bacterial activity. Recently, much attention has been paid to co-doped ß-TCP, that is explained by their ability, on the one hand, to reduce cytotoxicity for cells of the human organism, on the other hand, to achieve a successful antibacterial effect. Sr, Cu-co-doped solid solutions of the composition Ca9.5-xSrxCu(PO4)7 was obtained by the method of solid-phase reactions. The Rietveld method of structural refinement revealed the presence of Sr2+ ions in four crystal sites: M1, M2, M3, and M4. The M5 site is completely occupied by Cu2+. Isomorphic substitution of Ca2+ → (Sr2+and Cu2+) expands the concentration limits of the existence of the solid solution with the ß-TCP structure. No additional phases were formed up to x = 4.5 in Ca9.5-xSrxCu(PO4)7. Biocompatibility tests were performed on cell lines of human bone marrow mesenchymal stromal cells (hMSC), human fibroblasts (MRC-5) and osteoblasts (U-2OS). It was demonstrated that cytotoxicity exhibited a concentration dependence, along with an increase in osteogenesis and cell proliferation. Ca9.5-xSrxCu(PO4)7 powders showed significant inhibitory activity against pathogenic strains Escherichia coli and Staphylococcus aureus. Piezoelectric properties of Ca9.5-xSrxCu(PO4)7 were investigated. Possible ways to achieve high piezoelectric response are discussed. The combination of bioactive properties of Ca9.5-xSrxCu(PO4)7 renders them multifunctional materials suitable for bone substitutes.

3.
RSC Adv ; 10(18): 10867-10872, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35492893

RESUMO

Sr9In(VO4)7 was prepared by a solid-state method at 1270 K in air. This vanadate has the ß-Ca3(PO4)2-type structure and crystallizes in polar space group R3c. The structural parameters of Sr9In(VO4)7 were refined by the Rietveld method from laboratory powder X-ray diffraction data (XRD): the lattice parameters are a = 11.18016(9) Å and c = 39.6170(3) Å with Z = 6. In3+ cations occupy the octahedral M5 site, Sr2+ cations occupy the M1, M2, and M3 sites of the ß-Ca3(PO4)2-type structure, and the M4 site remains vacant. Sr9In(VO4)7 was characterized by differential thermal analysis (DTA), optical second-harmonic generation (SHG), high-temperature XRD, and dielectric measurements. All these methods prove the existence of a ferroelectric-paraelectric phase transition at T c = 974 K. This transition is compared with a similar transition in Ca9In(PO4)7 with lower T c = 902 K. The polar-to-centrosymmetric phase transition in such compounds has a quite unique mechanism of the order-disorder type. The structural transition involves slight shifts of the M1, M2, M3 cations and the E2O4, E3O4 tetrahedra, while half of the E1O4 tetrahedra (E = P or V) statistically reverse their orientation along the three-fold axis, so that the centre of symmetry appears in the structure as a whole. To invert the E1O4 tetrahedron, one oxygen anion should pass a large neighbouring cation (Sr2+ or Ca2+) that is only possible when intense rotational vibrations of the tetrahedra are excited at high temperatures. The lower Curie temperature in Ca9In(PO4)7 corresponds to the smaller rotational vibration amplitude of the P1O4 tetrahedron required to reverse this tetrahedra at T c in comparison with V1O4 in Sr9In(VO4)7.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA