Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Chem Biol ; 31(5): 1011-1022.e6, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38183989

RESUMO

Methyl ketone (MK)-ascarosides represent essential components of several pheromones in Caenorhabditis elegans, including the dauer pheromone, which triggers the stress-resistant dauer larval stage, and the male-attracting sex pheromone. Here, we identify an acyl-CoA thioesterase, ACOT-15, that is required for the biosynthesis of MK-ascarosides. We propose a model in which ACOT-15 hydrolyzes the ß-keto acyl-CoA side chain of an ascaroside intermediate during ß-oxidation, leading to decarboxylation and formation of the MK. Using comparative metabolomics, we identify additional ACOT-15-dependent metabolites, including an unusual piperidyl-modified ascaroside, reminiscent of the alkaloid pelletierine. The ß-keto acid generated by ACOT-15 likely couples to 1-piperideine to produce the piperidyl ascaroside, which is much less dauer-inducing than the dauer pheromone, asc-C6-MK (ascr#2, 1). The bacterial food provided influences production of the piperidyl ascaroside by the worm. Our work shows how the biosynthesis of MK- and piperidyl ascarosides intersect and how bacterial food may impact chemical signaling in the worm.


Assuntos
Caenorhabditis elegans , Feromônios , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Feromônios/metabolismo , Feromônios/biossíntese , Feromônios/química , Proteínas de Caenorhabditis elegans/metabolismo , Tioléster Hidrolases/metabolismo
2.
Science ; 384(6693): eadj3166, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38669570

RESUMO

Despite an increasingly detailed picture of the molecular mechanisms of bacteriophage (phage)-bacterial interactions, we lack an understanding of how these interactions evolve and impact disease within patients. In this work, we report a year-long, nationwide study of diarrheal disease patients in Bangladesh. Among cholera patients, we quantified Vibrio cholerae (prey) and its virulent phages (predators) using metagenomics and quantitative polymerase chain reaction while accounting for antibiotic exposure using quantitative mass spectrometry. Virulent phage (ICP1) and antibiotics suppressed V. cholerae to varying degrees and were inversely associated with severe dehydration depending on resistance mechanisms. In the absence of antiphage defenses, predation was "effective," with a high predator:prey ratio that correlated with increased genetic diversity among the prey. In the presence of antiphage defenses, predation was "ineffective," with a lower predator:prey ratio that correlated with increased genetic diversity among the predators. Phage-bacteria coevolution within patients should therefore be considered in the deployment of phage-based therapies and diagnostics.


Assuntos
Bacteriófagos , Cólera , Variação Genética , Vibrio cholerae , Cólera/microbiologia , Vibrio cholerae/genética , Vibrio cholerae/virologia , Bacteriófagos/genética , Bacteriófagos/fisiologia , Humanos , Bangladesh , Antibacterianos/uso terapêutico , Índice de Gravidade de Doença , Adulto , Metagenômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA