Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
IUBMB Life ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708996

RESUMO

Pancreatic cancer is one of the deadliest diseases with a poor prognosis and a five-survival rate. The STAT3 pathway is hyperactivated which contributes to the sustained proliferative signals in pancreatic cancer cells. We have isolated kaempferide (KF), an O-methylated flavonol, from the green propolis of Mimosa tenuiflora and examined its effect on two forms of cell death namely, apoptosis and paraptosis. KF significantly increased the cleavage of caspase-3 and PARP. It also downmodulated the expression of Alix (an intracellular inhibitor of paraptosis) and increased the expression of CHOP and ATF4 (transcription factors that promote paraptosis) indicating that KF promotes apoptosis as well as paraptosis. KF also increased intracellular reactive oxygen species (ROS) suggesting the perturbance of the redox state. N-acetylcysteine reverted the apoptosis- and paraptosis-inducing effects of KF. Some ROS inducers are known to suppress the STAT3 pathway and investigation revealed that KF downmodulates STAT3 and its upstream kinases (JAK1, JAK2, and Src). Additionally, KF also elevated the expression of SHP-1, a tyrosine phosphatase which is involved in the negative modulation of the STAT3 pathway. Knockdown of SHP-1 prevented KF-driven STAT3 inhibition. Altogether, KF has been identified as a promoter of apoptosis and paraptosis in pancreatic cancer cells through the elevation of ROS generation and SHP-1 expression.

2.
Planta Med ; 90(6): 454-468, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599606

RESUMO

Some in vitro and in vivo evidence is consistent with the cardiovascular beneficial activity of propolis. As the single actors responsible for this effect have never been identified, an in-depth investigation of flavonoids isolated from the green propolis of the Caatinga Mimosa tenuiflora was performed and their mechanism of action was described. A comprehensive electrophysiology, functional, and molecular docking approach was applied. Most flavanones and flavones were effective CaV1.2 channel blockers with a potency order of (2S)-sakuranetin > eriodictyol-7,3'-methyl ether > quercetin 3-methyl ether > 5,4'-dihydroxy-6,7-dimethoxyflavanone > santin > axillarin > penduletin > kumatakenin, ermanin and viscosine being weak or modest stimulators. Except for eriodictyol 5-O-methyl ether, all the flavonoids were also effective spasmolytic agents of vascular rings, kumatakenin and viscosine also showing an endothelium-dependent activity. (2S)-Sakuranetin also stimulated KCa1.1 channels both in single myocytes and vascular rings. In silico analysis provided interesting insights into the mode of action of (2S)-sakuranetin within both CaV1.2 and KCa1.1 channels. The green propolis of the Caatinga Mimosa tenuiflora is a valuable source of multi-target vasoactive flavonoids: this evidence reinforces its nutraceutical value in the cardiovascular disease prevention arena.


Assuntos
Flavonoides , Simulação de Acoplamento Molecular , Própole , Vasodilatadores , Flavonoides/farmacologia , Flavonoides/isolamento & purificação , Flavonoides/química , Vasodilatadores/farmacologia , Vasodilatadores/isolamento & purificação , Vasodilatadores/química , Animais , Própole/química , Própole/farmacologia , Mimosa/química , Masculino , Ratos , Fitoalexinas
3.
Planta Med ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38749480

RESUMO

Copaifera duckei oleoresin is a plant product extensively used by the Brazilian population for multiple purposes, such as medicinal and cosmetic. Despite its ethnopharmacological relevance, there is no pharmacokinetic data on this important medicinal plant. Due to this, we determined the pharmacokinetic profile of the major nonvolatile compounds of C. duckei oleoresin. The diterpenes ent-polyalthic acid and dihydro-ent-agathic acid correspond to approximately 40% of the total oleoresin. Quantification was performed using LC-MS/MS, and the validated analytical method showed to be precise, accurate, robust, reliable, and linear between 0.57 and 114.74 µg/mL plasma and 0.09 to 18.85 µg/mL plasma, respectively, for ent-polyalthic acid and dihydro-ent-agathic acid, making it suitable for application in preclinical pharmacokinetic studies. Wistar rats received a single 200 mg/kg oral dose (gavage) of C. duckei oleoresin, and blood was collected from their caudal vein through 48 h. Population pharmacokinetics analysis of ent-polyalthic and dihydro-ent-agathic acids in rats was evaluated using nonlinear mixed-effects modeling conducted in NONMEN software. The pharmacokinetic parameters of ent-polyalthic acid were absorption constant rate = 0.47 h-1, central and peripheral apparent volume of distribution = 0.04 L and 2.48 L, respectively, apparent clearance = 0.15 L/h, and elimination half-life = 11.60 h. For dihydro-ent-agathic acid, absorption constant rate = 0.28 h-1, central and peripheral apparent volume of distribution = 0.01 L and 0.18 L, respectively, apparent clearance = 0.04 L/h, and elimination half-life = 3.49 h. The apparent clearance, central apparent volume of distribution, and peripheral apparent volume of distribution of ent-polyalthic acid were approximately 3.75, 4.00-, and 13.78-folds higher than those of dihydro-ent-agathic.

4.
Exp Parasitol ; 262: 108771, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723847

RESUMO

Toxoplasmosis affects about one-third of the world's population. The disease treatment methods pose several side effects and do not efficiently eliminate the parasite, making the search for new therapeutic approaches necessary. We aimed to assess the anti-Toxoplasma gondii activity of four Copaifera oleoresins (ORs) and two isolated diterpene acids, named ent-kaurenoic and ent-polyalthic acid. We used HeLa cells as an experimental model of toxoplasmosis. Uninfected and infected HeLa cells were submitted to the treatments, and the parasite intracellular proliferation, cytokine levels and ROS production were measured. Also, tachyzoites were pre-treated and the parasite invasion was determined. Finally, an in silico analysis was performed to identify potential parasite targets. Our data show that the non-cytotoxic concentrations of ORs and diterpene acids controlled the invasion and proliferation of T. gondii in HeLa cells, thus highlighting the possible direct action on parasites. In addition, some compounds tested controlled parasite proliferation in an irreversible manner. An additional and non-exclusive mechanism of action involves the modulation of host cell components, by affecting the upregulation of the IL-6. Additionally, molecular docking suggested that ent-polyalthic acid has a high affinity for the active site of the TgCDPK1 protein. Copaifera ORs have great antiparasitic activity against T. gondii, and this effect can be partially explained by the presence of the isolated compounds ent-kaurenoic and ent-polyalthic acid.


Assuntos
Diterpenos , Fabaceae , Extratos Vegetais , Toxoplasma , Células HeLa , Humanos , Diterpenos/farmacologia , Diterpenos/isolamento & purificação , Diterpenos/química , Toxoplasma/efeitos dos fármacos , Toxoplasma/crescimento & desenvolvimento , Fabaceae/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Citocinas/metabolismo , Interleucina-6/metabolismo , Simulação de Acoplamento Molecular
5.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36724272

RESUMO

AIMS: The antibacterial activity of red propolis extract (RPE) and brown propolis extracts (BPE) and the synergistic effect of RPE with cefoxitin (CEFO), imipenem (IMI), and ertapenem (ERTA) was evaluated in vitro against methicillin-resistant Staphylococcus aureus (MRSA) strains. METHODS AND RESULTS: MRSA ATCC 33591, community-associated (CA-MRSA) USA300, and four clinical isolates were used. A broth microdilution assay was performed to obtain inhibitory and bactericidal concentrations of BPE, RPE, CEFO, IMI, and ERTA. RPE in combination with CEFO, IMI, and ERTA was evaluated on the formation or eradication of biofilm. The bacterial relative membrane conductivity of the strains was assessed after RPE and combinations exposition. Surface/binding computational analyzes between RPE compounds and penicillin binding protein 2a (PBP2a) were performed. BPE samples had no activity against MRSA (MICs 3.2-5 g l-1; MBCs 10-15 g l-1), so the subsequent assays were carried out only with RPE and antimicrobials. RPE exerted a bacteriostatic action (MICs 0.0156-0.125 g l-1; MBCs 0.5-2 g l-1) but the combinations with IMI and ERTA showed the highest inhibition, as observed in the time-kill curve. However, the FICI index showed synergism (≥0.5) only to RPE + IMI. This combination was the most effective in inhibiting the biofilm and showed the highest values of membrane conductivity. Computational predictions indicated that RPE constituents may interact with PBP2a. CONCLUSION: RPE and RPE + IMI exerted an antibacterial and antibiofilm activity on MRSA strains probably due to membrane/wall damage and interactions with PBP2a.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Própole , beta-Lactamas/farmacologia , Própole/farmacologia , Brasil , Sinergismo Farmacológico , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Cefoxitina/metabolismo , Cefoxitina/farmacologia , Imipenem/farmacologia , Testes de Sensibilidade Microbiana
6.
Planta Med ; 89(2): 158-167, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36170858

RESUMO

Guttiferone E (GE) is a benzophenone found in Brazilian red propolis. In the present study, the effect of GE on human (A-375) and murine (B16-F10) melanoma cells was investigated. GE significantly reduced the cellular viability of melanoma cells in a time-dependent manner. In addition, GE demonstrated antiproliferative effect, with IC50 values equivalent to 9.0 and 6.6 µM for A-375 and B16-F10 cells, respectively. The treatment of A-375 cells with GE significantly increased cell populations in G0/G1 phase and decreased those in G2/M phase. Conversely, on B16-F10 cells, GE led to a significant decrease in the populations of cells in G0/G1 phase and concomitantly an increase in the population of cells in phase S. A significantly higher percentage of apoptotic cells was observed in A-375 (43.5%) and B16-F10 (49.9%) cultures after treatment with GE. Treatments with GE caused morphological changes and significant decrease to the melanoma cells' density. GE (10 µM) inhibited the migration of melanoma cells, with a higher rate of inhibition in B16-F10 cells (73.4%) observed. In addition, GE significantly reduced the adhesion of A375 cells, but showed no effect on B16-F10. Treatment with GE did not induce changes in P53 levels in A375 cultures. Molecular docking calculations showed that GE is stable in the active sites of the tubulin dimer with a similar energy to taxol chemotherapy. Taken together, the data suggest that GE has promising antineoplastic potential against melanoma.


Assuntos
Antineoplásicos , Melanoma Experimental , Melanoma , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Simulação de Acoplamento Molecular , Antineoplásicos/uso terapêutico , Benzofenonas/farmacologia , Benzofenonas/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma Experimental/tratamento farmacológico , Camundongos Endogâmicos C57BL
7.
Exp Parasitol ; 250: 108534, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37100271

RESUMO

Due to the lack of efficient antiparasitic therapy and vaccines, as well as emerging resistance strains, congenital toxoplasmosis is still a public health issue worldwide. The present study aimed to assess the effects of an oleoresin obtained from the species Copaifera trapezifolia Hayne (CTO), and an isolated molecule found in the CTO, ent-polyalthic acid (ent-15,16-epoxy-8(17),13(16),14-labdatrien-19-oic acid) (named as PA), against T. gondii infection. We used human villous explants as an experimental model of human maternal-fetal interface. Uninfected and infected villous explants were exposed to the treatments; the parasite intracellular proliferation and the cytokine levels were measured. Also, T. gondii tachyzoites were pre-treated and the parasite proliferation was determined. Our findings showed that CTO and PA reduced efficiently the parasite growth with an irreversible action, but without causing toxicity to the villi. Also, treatments reduced the levels of IL-6, IL-8, MIF and TNF by villi, what configures a valuable treatment option for the maintenance of a pregnancy in an infectious context. In addition to a possible direct effect on parasites, our data suggest an alternative mechanism by which CTO and PA alter the villous explants environment and then impair parasite growth, since the pre-treatment of villi resulted in lower parasitic infection. Here, we highlighted PA as an interesting tool for the design of new anti-T. gondii compounds.


Assuntos
Fabaceae , Toxoplasma , Humanos , Gravidez , Feminino , Extratos Vegetais/farmacologia
8.
Biomed Chromatogr ; 37(8): e5634, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36977284

RESUMO

Propolis is a natural product of great economic and pharmacological importance. The flora surrounding the bee communities is a determining factor in the composition of propolis and therefore in its biological and medicinal properties. Brown propolis is one of the most important types of propolis in Brazil, produced in the southeastern region. The ethanolic extract of a brown propolis sample from Minas Gerais state was chemically characterized for the subsequent development of a RP-HPLC method, validated according to the standards of regulatory agencies. The leishmanicidal activity of this extract was assessed. The brown propolis was characterized by the presence of chemical markers reported on green propolis such as ferulic acid, coumaric acid, caffeic acid, cinnamic acid, baccharin, artepillin and drupanin, indicating a probable origin on Baccharis dracunculifolia. The developed method agreed with the parameters established by the validation guidelines, then proved to be reliable for the analysis of this type of propolis. The brown propolis displayed significant activity against Leishmania amazonensis with IC50 values of 1.8 and 2.4 µg/ml against the promastigote and amastigote forms, respectively. The studied propolis exhibited promising evidence for use as a natural source against L. amazonensis.


Assuntos
Própole , Própole/farmacologia , Própole/química , Brasil , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/química , Padrões de Referência
9.
Phytother Res ; 37(2): 399-409, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36073666

RESUMO

Different propolis samples can be obtained in Brazil, such as green, brown and red. Studies related to Brazilian red propolis (BRP) have increased in the last few years, so the aim of this study was to investigate its effects on the prostate cell lines LNCaP and PC-3 and on human monocytes. BRP chemical composition was analyzed by HPLC-DAD, the viability of monocyte and cancer cell by MTT assay. Cytokine production (TNF-α, IL-1ß, IL-6, IL-10) by monocytes was quantitated by ELISA, the expression of cell markers (TLR-2, TLR-4, HLA-DR, CD80) and reactive oxygen species by flow cytometry. The candidacidal activity and the effects of supernatant of treated monocytes on tumor cells were assessed. BRP affected LNCaP viability after 48 and 72 h, while PC-3 cells were more resistant over time. BRP upregulated CD80 and HLA-DR expression, and stimulated TNF-α, IL-6 and IL-10 production. BRP enhanced the fungicidal activity of monocytes, displayed an antioxidant action and the supernatant of BRP-treated monocytes diminished LNCaP viability. In the search for new immunomodulatory and antitumoral agents, BRP exerted a selective cytotoxic activity on prostate cancer cells and an immunomodulatory action, suggesting its potential for clinical trials with oncological patients and for the discovery of new immunomodulatory and antitumor drugs.


Assuntos
Antineoplásicos , Própole , Neoplasias da Próstata , Masculino , Humanos , Interleucina-10/metabolismo , Interleucina-10/farmacologia , Monócitos , Fator de Necrose Tumoral alfa/metabolismo , Própole/química , Brasil , Interleucina-6/metabolismo , Próstata , Antígenos HLA-DR/metabolismo , Antígenos HLA-DR/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo
10.
Molecules ; 28(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37110745

RESUMO

The technologies used to produce the different dosage forms of propolis can selectively affect the original propolis compounds and their biological activities. The most common type of propolis extract is hydroethanolic. However, there is considerable demand for ethanol-free propolis presentations, including stable powder forms. Three propolis extract formulations were developed and investigated for chemical composition and antioxidant and antimicrobial activity: polar propolis fraction (PPF), soluble propolis dry extract (PSDE), and microencapsulated propolis extract (MPE). The different technologies used to produce the extracts affected their physical appearance, chemical profile, and biological activity. PPF was found to contain mainly caffeic and p-Coumaric acid, while PSDE and MPE showed a chemical fingerprint closer to the original green propolis hydroalcoholic extract used. MPE, a fine powder (40% propolis in gum Arabic), was readily dispersible in water, and had less intense flavor, taste, and color than PSDE. PSDE, a fine powder (80% propolis) in maltodextrin as a carrier, was perfectly water-soluble and could be used in liquid formulations; it is transparent and has a strong bitter taste. PPF, a purified solid with large amounts of caffeic and p-Coumaric acids, had the highest antioxidant and antimicrobial activity, and therefore merits further study. PSDE and MPE had antioxidant and antimicrobial properties and could be used in products tailored to specific needs.


Assuntos
Anti-Infecciosos , Própole , Antioxidantes/química , Própole/química , Pós , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Água
11.
Molecules ; 28(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894606

RESUMO

The demand for organic and functional food continues to increase yearly. Among the available functional foods, propolis is a bee product that has various beneficial properties, including antimicrobial, antioxidant, and anti-inflammatory activities. However, it generally is only available in ethanol solution, which has poor bioavailability, as it is relatively insoluble in water. The use of such ethanol extracts is often objectionable because of the alcohol content and because they have a strong and striking taste. Development of alternatives that can efficiently and safely increase solubility in water, and that meet organic production specifications, has been a challenge. To address these concerns, microcapsules were developed using spray-dryer technology from an emulsion based on EPP-AF® propolis and gum arabic (i-CAPS). These propolis-loaded microcapsules were characterized using FT-IR, SEM, TGA, HPLC, and spectrophotometric techniques, along with determination of antimicrobial, antioxidant, antitumor, anti-inflammatory, and antihypercholesterolemic activities, as well as permeability in in vitro models. The production system resulted in microcapsules with a spherical shape and an encapsulation efficiency of 93.7 ± 0.7%. They had IC50s of 2.654 ± 0.062 and 7.342 ± 0.058 µg/mL by FRAP and DPPH antioxidant methods, respectively. The EPP-AF® i-CAPS also had superior antimicrobial activity against Gram-positive bacteria. Antitumor activity was calculated based on the concentration that inhibited 50% of growth of AGS, Caco-2, and MCF-7 cell strains, giving results of 154.0 ± 1.0, 117 ± 1.0, and 271.0 ± 25 µg/mL, respectively. The microcapsule presentation reduced the permeation of cholesterol by 53.7%, demonstrating antihypercholesterolemic activity, and it improved the permeability of p-coumaric acid and artepillin C. The IC50 for NO production in RAW 264.7 cells was 59.0 ± 0.1 µg/mL. These findings demonstrate the potential of this new propolis product as a food and pharmaceutical ingredient, though additional studies are recommended to validate the safety of proposed dosages.


Assuntos
Anti-Infecciosos , Própole , Humanos , Própole/farmacologia , Antioxidantes/farmacologia , Antioxidantes/análise , Cápsulas , Espectroscopia de Infravermelho com Transformada de Fourier , Células CACO-2 , Anti-Infecciosos/farmacologia , Etanol , Água , Anti-Inflamatórios/farmacologia
12.
Nutr Cancer ; 74(3): 1097-1105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34085572

RESUMO

An alternative to reduce the undesirable effects of antineoplastic agents has been the combination of classical treatments with nutritional strategies aimed at reducing systemic toxicity without decreasing the antitumor activity of already used drugs. Within this context, this study evaluated the possible reduction of toxicity when cisplatin treatment is combined with watermelon pulp juice supplementation in C57BL/6 mice with melanoma. Watermelon is a fruit rich in vitamins, minerals, proteins, lycopene, carotene, and xanthophylls, which has shown effectiveness in the treatment of cardiovascular diseases, weight loss, urinary infections, gout, hypertension, and mutagenicity. The following parameters were analyzed: animal survival, bone marrow genotoxicity, serum creatinine and urea, histopathological features of the tumor tissue, tumor weight and volume, and weight of non-tumor tissues (kidney, liver, spleen, heart, and lung). The results showed that watermelon had no antitumor effect but reduced the toxicity of cisplatin, as demonstrated by an increase in the number of bone marrow cells and a decrease in serum creatinine and urea levels. The data suggest that watermelon pulp juice can be an alternative for reducing the side effects of antineoplastic agents.


Assuntos
Antineoplásicos , Citrullus , Melanoma , Animais , Antineoplásicos/toxicidade , Cisplatino/toxicidade , Creatinina , Camundongos , Camundongos Endogâmicos C57BL , Ureia
13.
J Toxicol Environ Health A ; 85(4): 131-142, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34612163

RESUMO

Melanoma is the most aggressive type of skin cancer, and thus it is important to develop new drugs for its treatment. The present study aimed to examine the antitumor effects of solamargine a major alkaloid heteroside present in Solanum lycocarpum fruit. In addition solamargine was incorporated into nanoparticles (NP) of yttrium vanadate functionalized with 3-chloropropyltrimethoxysilane (YVO4:Eu3+:CPTES:SM) to determine antitumor activity. The anti-melanoma assessment was performed using a syngeneic mouse melanoma model B16F10 cell line. In addition, systemic toxicity, nephrotoxic, and genotoxic parameters were assessed. Solamargine, at doses of 5 or 10 mg/kg/day administered subcutaneously to male C57BL/6 mice for 5 days, decreased tumor size and frequency of mitoses in tumor tissue, indicative of a decrease in cell proliferation. Treatments with YVO4:Eu3+:CPTES:SM significantly reduced the number of mitoses in tumor tissue, associated with no change in tumor size. There were no apparent signs of systemic toxicity, nephrotoxicity, and genotoxicity initiated by treatments either with solamargine alone or plant alkaloid incorporated into NP. The animals treated with YVO4:Eu3+:CPTES:SM exhibited significant increase in spleen weight accompanied by no apparent histological changes in all tissues examined. In addition, animals treated with solamargine (10 mg/kg/day) and YVO4:Eu3+:CPTES:SM demonstrated significant reduction in hepatic DNA damage which was induced by tumor growth. Therefore, data suggest that solamargine may be considered a promising candidate in cancer therapy with no apparent toxic effects.


Assuntos
Antineoplásicos/farmacologia , Melanoma Experimental/tratamento farmacológico , Alcaloides de Solanáceas/farmacologia , Animais , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Dano ao DNA , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitose/efeitos dos fármacos , Nanopartículas/administração & dosagem , Silanos/química , Alcaloides de Solanáceas/toxicidade , Ítrio/química
14.
Phytother Res ; 36(1): 448-461, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34862831

RESUMO

Docetaxel (DTX) is used against breast cancer despite its side effects such as toxicity and immunosuppression. Here we investigated the cytotoxic and immunomodulatory effects of the ethanol solution extract of propolis (EEP) in combination with DTX on MCF-7 breast cancer cells and on women's monocyte. The cytotoxic potential of EEP + DTX was assessed by MTT assay and the type of tumor cell death was evaluated by flow cytometry. The effects of EEP + DTX on the migration and invasion of MCF-7 cells were analyzed. Cytokine production by monocytes was assessed by ELISA and the expression of cell surface markers was evaluated by flow cytometry. We also assessed the fungicidal activity of monocytes against Candida albicans and the generation of reactive oxygen species (ROS). Finally, the impact of the supernatants of treated monocytes in the viability, migration, and invasiveness of tumor cells was assessed. EEP enhanced the cytotoxicity of DTX alone against MCF-7 cells by inducing necrosis and inhibiting their migratory ability. EEP + DTX exerted no cytotoxic effects on monocytes and stimulated HLA-DR expression, TNF-α, and IL-6 production, exerted an immunorestorative action in the fungicidal activity, and reduced the oxidative stress. Our findings have practical implications and reveal new insights for complementary medicine.


Assuntos
Neoplasias da Mama , Própole , Neoplasias da Mama/tratamento farmacológico , Docetaxel/farmacologia , Feminino , Humanos , Células MCF-7 , Monócitos , Própole/farmacologia
15.
Bioorg Med Chem ; 47: 116372, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34454129

RESUMO

Breast cancer has the highest incidence and mortality in females, while prostate cancer has the second-highest incidence in males. Studies have shown that compounds from Brazilian green propolis have antitumor activities and can selectively inhibit the AKR1C3 enzyme, overexpressed in hormone-dependent prostate and breast tumors. Thus, in an attempt to develop new cytotoxic inhibitors against these cancers, three prenylated compounds, artepillin C, drupanin and baccharin, were isolated from green propolis to synthesize new derivatives via coupling reactions with different amino acids. All obtained derivatives were submitted to antiproliferative assays against four cancer cells (MCF-7, MDA MB-231, PC-3, and DU145) and two normal cell lines (MCF-10A and PNT-2) to evaluate their cytotoxicity. In general, the best activity was observed for compound6e, derived from drupanin, which exhibited half-maximal inhibitory concentration (IC50) of 9.6 ± 3 µM and selectivity index (SI) of 5.5 against MCF-7 cells.In silicostudies demonstrated that these derivatives present coherent docking interactions and binding modes against AKR1C3, which might represent a possible mechanism of inhibition in MCF-7 cells.


Assuntos
Aminoácidos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Cinamatos/farmacologia , Fenilpropionatos/farmacologia , Própole/química , Tricotecenos/farmacologia , Aminoácidos/análise , Aminoácidos/síntese química , Antineoplásicos Fitogênicos/análise , Antineoplásicos Fitogênicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cinamatos/análise , Cinamatos/síntese química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Fenilpropionatos/análise , Fenilpropionatos/síntese química , Própole/análise , Própole/síntese química , Própole/farmacologia , Relação Estrutura-Atividade , Tricotecenos/análise , Tricotecenos/síntese química
16.
J Sep Sci ; 44(16): 3089-3097, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34169651

RESUMO

Propolis comprises a complex resinous product composed of plant's parts or exudates, pollen, bee wax, and enzymes. Brazilian brown propolis from Araucaria sp displays several biological activities. Considering the lack of validated analytical methods for its analysis, we are reporting the development of a validated high-performance liquid chromatography with photodiode array detector method to analyze Araucaria brown propolis. The crude propolis were extracted and chromatographed, furnishing six main diterpenes. The isolated standards were used to draw the analytical curves, allowing the studies of selectivity, precision, accuracy, recovery, robustness, the determination of limits of detection and limits of quantification. The mobile phase consisted of 0.1% acetic acid in water and acetonitrile, using an octadecylsilane column, 1 mL/min flow rate and detection at 200 or 241 nm. Relative standard deviation values obtained for intra-day and inter-day precision were lower than 4% for all diterpenes. From the five parameters for robustness, wavelength detection and flow rate were the critical ones. Limits of detection and quantification ranged from 0.808 to 10.359 µg/mL and from 2.448 to 31.392 µg/mL, respectively. The recoveries were between 105.03 and 108.13%, with relative standard deviation values around 5.0%. The developed method is precise, sensitive, and reliable for analyzing Araucaria brown propolis.


Assuntos
Araucaria/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Diterpenos/análise , Própole/análise , Abietanos/análise , Brasil , Ácidos Carboxílicos/análise , Técnicas de Química Analítica , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes , Tetra-Hidronaftalenos/análise
17.
J Toxicol Environ Health A ; 84(14): 569-581, 2021 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-33730993

RESUMO

Copaifera langsdorffii Desf. is a plant found in South America, especially in Brazil. Oleoresin and the leaves of this plant is used as a popular medicinal agent. However, few studies on the chemical composition of aerial parts and related biological activities are known. This study aimed to examine the cytotoxic, genotoxic, and antigenotoxic potential of C. langsdorffii aerial parts hydroalcoholic extract (CLE) and two of its major compounds afzelin and quercitrin. The cytotoxic and antigenotoxic potential of CLE was determined as follows: 1) against genotoxicity induced by doxorubicin (DXR) or methyl methanesulfonate (MMS) in V79 cells; 2) by direct and indirect-acting mutagens in Salmonella typhimurium strains; and 3) by MMS in male Swiss mice. The protective effects of afzelin and quercitrin against DXR or MMS were also evaluated in V79 and HepG2 cells. CLE was cytotoxic as evidenced by clonogenic efficiency assay. Further, CLE did not induce a significant change in frequencies of chromosomal aberrations and micronuclei; as well as number of revertants in the Ames test demonstrating absence of genotoxicity. In contrast, CLE was found to be antigenotoxic in mammalian cells. The results also showed that CLE exerted inhibitory effect against indirect-acting mutagens in the Ames test. Afzelin and quercitrin did not reduce genotoxicity induced by DXR or MMS in V79 cells. However, treatments using afzelin and quercitrin decreased MMS-induced genotoxicity in HepG2 cells. The antigenotoxic effect of CLE observed in this study may be partially attributed to the antioxidant activity of the combination of major components afzelin and quercitrin.


Assuntos
Dano ao DNA/efeitos dos fármacos , Fabaceae/química , Manosídeos/farmacologia , Extratos Vegetais/farmacologia , Proantocianidinas/farmacologia , Substâncias Protetoras/farmacologia , Quercetina/análogos & derivados , Animais , Doxorrubicina/toxicidade , Células Hep G2 , Humanos , Masculino , Metanossulfonato de Metila/toxicidade , Camundongos , Mutagênicos/farmacologia , Mutagênicos/toxicidade , Extratos Vegetais/química , Folhas de Planta/química , Quercetina/farmacologia , Salmonella typhimurium/efeitos dos fármacos
18.
Phytother Res ; 35(5): 2274-2286, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32935428

RESUMO

Propolis is a viscous resin consisting of plant material (shoots, flowers, and plant exudates), salivary secretions and waxes produced by Apis mellifera bees. Its popular use aroused the interests of scientific research, which proved to be a potential source of various bioactive substances. The chemical composition of propolis depends on several factors, such as the different types of plant sources collected by bees, geographic origin, and the time of year in which they are produced, but it is known that phenolic represent the main bioactive constituents of propolis. Baccharis dracunculifolia DC (Asteraceae) is the most important botanical source of propolis and a native to southeastern Brazil. It is widely known as the green propolis because of its deep green color. One of its major phenolic acids is artepillin C (Art-C), a diprenyl-p-hydroxycinnamic acid derivative. This review aims to provide a comprehensive summary of the pharmacological effects of Art-C. The limited number of publications on this topic over the past two decades have been collected from databases and summarized. Numerous biological activities have been described for the Art-C, such as gastroprotective, anti-inflammatory, antimicrobial, antioxidant, antitumor. This article describes aspects of occurrence, synthesis, biological activities and pharmacokinetic approaches.

19.
Chem Biodivers ; 18(9): e2100288, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34227213

RESUMO

Seven phenolic compounds (ferulic acid, caffeic acid, 4-methoxycinnamic acid, 3,4-dimethoxycinnamic acid, 3-hydroxy-4-methoxybenzaldehyde, 3-methoxy-4-hydroxypropiophenone and 1-O,2-O-digalloyl-6-O-trans-p-coumaroyl-ß-D-glucopyranoside), a flavanonol (7-O-methylaromadendrin), two lignans (pinoresinol and matairesinol) and six diterpenic acids/alcohol (19-acetoxy-13-hydroxyabda-8(17),14-diene, totarol, 7-oxodehydroabietic acid, dehydroabietic acid, communic acid and isopimaric acid) were isolated from the hydroalcoholic extract of a Brazilian Brown Propolis and characterized by NMR spectral data analysis. The volatile fraction of brown propolis was characterized by CG-MS, composed mainly of monoterpenes and sesquiterpenes, being the major α-pinene (18.4 %) and ß-pinene (10.3 %). This propolis chemical profile indicates that Pinus spp., Eucalyptus spp. and Araucaria angustifolia might be its primary plants source. The brown propolis displayed significant activity against Plasmodium falciparum D6 and W2 strains with IC50 of 5.3 and 9.7 µg/mL, respectively. The volatile fraction was also active with IC50 of 22.5 and 41.8 µg/mL, respectively. Among the compounds, 1-O,2-O-digalloyl-6-O-trans-p-coumaroyl-ß-D-glucopyranoside showed IC50 of 3.1 and 1.0 µg/mL against D6 and W2 strains, respectively, while communic acid showed an IC50 of 4.0 µg/mL against W2 strain. Cytotoxicity was determined on four tumor cell lines (SK-MEL, KB, BT-549, and SK-OV-3) and two normal renal cell lines (LLC-PK1 and VERO). Matairesinol, 7-O-methylaromadendrin, and isopimaric acid showed an IC50 range of 1.8-0.78 µg/mL, 7.3-100 µg/mL, and 17-18 µg/mL, respectively, against the tumor cell lines but they were not cytotoxic against normal cell lines. The crude extract of brown propolis displayed antimicrobial activity against C. neoformans, methicillin-resistant Staphylococcus aureus, and P. aeruginosa at 29.9 µg/mL, 178.9 µg/mL, and 160.7 µg/mL, respectively. The volatile fraction inhibited the growth of C. neoformans at 53.0 µg/mL. The compounds 3-hydroxy-4-methoxybenzaldehyde, 3-methoxy-4-hydroxypropiophenone and 7-oxodehydroabietic acid were active against C. neoformans, and caffeic and communic acids were active against methicillin-resistant Staphylococcus aureus.


Assuntos
Antibacterianos/farmacologia , Antimaláricos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Compostos Fitoquímicos/farmacologia , Própole/química , Animais , Antibacterianos/biossíntese , Antibacterianos/química , Antimaláricos/química , Antimaláricos/metabolismo , Antineoplásicos Fitogênicos/biossíntese , Antineoplásicos Fitogênicos/química , Abelhas , Brasil , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Testes de Sensibilidade Parasitária , Compostos Fitoquímicos/biossíntese , Compostos Fitoquímicos/química , Plasmodium falciparum/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
20.
Phytochem Anal ; 32(3): 404-411, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32901989

RESUMO

INTRODUCTION: Propolis is widely used in folk medicine, and many factors can affect its chemical composition, including abiotic factors that can influence plants and bees. Therefore, analytical methods are powerful techniques in the quality control of such products. OBJECTIVE: Develop and validate an analytical method for quantifying volatile compounds in Brazilian brown propolis, and evaluate its biological activities. METHODS: A gas chromatography flame ionisation detector (GC-FID) analytical method was validated, attending the parameters of international validation guidelines as ANVISA 2017 and ICH 2005, for quantification of compounds present in volatile oils from propolis. Evaluation of cytotoxic, antimicrobial, and leishmanicidal activities of the oil. RESULTS: The compounds 1,8-cineole, terpinen-4-ol, α-copaene, ß-caryophyllene, γ-muurolene, nerolidol, spathulenol, and γ-palmitolactone were isolated from the volatile fraction of a Brazilian brown propolis and used in the method validation. All the validation parameters of the method were satisfactory. The volatile fraction displayed a significant leishmanicidal activity, with half maximal inhibition concentration (IC50 ) = 21.3 µg/mL against amastigote forms and IC50 = 25.1 µg/mL against promastigote forms of Leishmania amazonensis. The oil also displayed an antibacterial effect by inhibiting the growth of Streptococcus mutans and Staphylococcus aureus at 25 µg/mL and 50 µg/mL, respectively, but it was not cytotoxic against AGP-01, He-La and CHO-K1cell lines, with IC50 > 100 µg/mL. CONCLUSION: The GC-FID method can be a useful tool in the quality control of propolis material. The southeast brown propolis showed a high chemical complexity in its volatile fraction, which displayed leishmanicidal activity and bactericidal activity.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Própole , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Abelhas , Brasil , Cromatografia Gasosa , Óleos Voláteis/farmacologia , Própole/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA