Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 293(15): 5695-5704, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29475946

RESUMO

Enzymes at the phosphoenolpyruvate (PEP)-pyruvate-oxaloacetate or anaplerotic (ANA) node control the metabolic flux to glycolysis, gluconeogenesis, and anaplerosis. Here we used genetic, biochemical, and 13C isotopomer analysis to characterize the role of the enzymes at the ANA node in intracellular survival of the world's most successful bacterial pathogen, Mycobacterium tuberculosis (Mtb). We show that each of the four ANA enzymes, pyruvate carboxylase (PCA), PEP carboxykinase (PCK), malic enzyme (MEZ), and pyruvate phosphate dikinase (PPDK), performs a unique and essential metabolic function during the intracellular survival of Mtb. We show that in addition to PCK, intracellular Mtb requires PPDK as an alternative gateway into gluconeogenesis. Propionate and cholesterol detoxification was also identified as an essential function of PPDK revealing an unexpected role for the ANA node in the metabolism of these physiologically important intracellular substrates and highlighting this enzyme as a tuberculosis (TB)-specific drug target. We show that anaplerotic fixation of CO2 through the ANA node is essential for intracellular survival of Mtb and that Mtb possesses three enzymes (PCA, PCK, and MEZ) capable of fulfilling this function. In addition to providing a back-up role in anaplerosis we show that MEZ also has a role in lipid biosynthesis. MEZ knockout strains have an altered cell wall and were deficient in the initial entry into macrophages. This work reveals that the ANA node is a focal point for controlling the intracellular replication of Mtb, which goes beyond canonical gluconeogenesis and represents a promising target for designing novel anti-TB drugs.


Assuntos
Proteínas de Bactérias , Macrófagos , Viabilidade Microbiana , Mycobacterium tuberculosis , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Células THP-1
2.
BMC Bioinformatics ; 15 Suppl 14: S5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25472549

RESUMO

BACKGROUND: The reliability and reproducibility of experimental procedures is a cornerstone of scientific practice. There is a pressing technological need for the better representation of biomedical protocols to enable other agents (human or machine) to better reproduce results. A framework that ensures that all information required for the replication of experimental protocols is essential to achieve reproducibility. To construct EXACT2 we manually inspected hundreds of published and commercial biomedical protocols from several areas of biomedicine. After establishing a clear pattern for extracting the required information we utilized text-mining tools to translate the protocols into a machine amenable format. We have verified the utility of EXACT2 through the successful processing of previously 'unseen' (not used for the construction of EXACT2)protocols. METHODS: We have developed the ontology EXACT2 (EXperimental ACTions) that is designed to capture the full semantics of biomedical protocols required for their reproducibility. RESULTS: The paper reports on a fundamentally new version EXACT2 that supports the semantically-defined representation of biomedical protocols. The ability of EXACT2 to capture the semantics of biomedical procedures was verified through a text mining use case. In this EXACT2 is used as a reference model for text mining tools to identify terms pertinent to experimental actions, and their properties, in biomedical protocols expressed in natural language. An EXACT2-based framework for the translation of biomedical protocols to a machine amenable format is proposed. CONCLUSIONS: The EXACT2 ontology is sufficient to record, in a machine processable form, the essential information about biomedical protocols. EXACT2 defines explicit semantics of experimental actions, and can be used by various computer applications. It can serve as a reference model for for the translation of biomedical protocols in natural language into a semantically-defined format.


Assuntos
Ontologias Biológicas , Mineração de Dados , Software , Processamento Eletrônico de Dados , Idioma , Reprodutibilidade dos Testes , Semântica
3.
ACS Infect Dis ; 7(1): 174-188, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33356117

RESUMO

Tuberculosis (TB) is the most lethal bacterial infectious disease worldwide. It is notoriously difficult to treat, requiring a cocktail of antibiotics administered over many months. The dense, waxy outer membrane of the TB-causing agent, Mycobacterium tuberculosis (Mtb), acts as a formidable barrier against uptake of antibiotics. Subsequently, enzymes involved in maintaining the integrity of the Mtb cell wall are promising drug targets. Recently, we demonstrated that Mtb lacking malic enzyme (MEZ) has altered cell wall lipid composition and attenuated uptake by macrophages. These results suggest that MEZ contributes to lipid biosynthesis by providing reductants in the form of NAD(P)H. Here, we present the X-ray crystal structure of MEZ to 3.6 Å. We use biochemical assays to demonstrate MEZ is dimeric in solution and to evaluate the effects of pH and allosteric regulators on its kinetics and thermal stability. To assess the interactions between MEZ and its substrate malate and cofactors, Mn2+ and NAD(P)+, we ran a series of molecular dynamics (MD) simulations. First, the MD analysis corroborates our empirical observations that MEZ is unusually flexible, which persists even with the addition of substrate and cofactors. Second, the MD simulations reveal that dimeric MEZ subunits alternate between open and closed states, and that MEZ can stably bind its NAD(P)+ cofactor in multiple conformations, including an inactive, compact NAD+ form. Together the structure of MEZ and insights from its dynamics can be harnessed to inform the design of MEZ inhibitors that target Mtb and not human malic enzyme homologues.


Assuntos
Mycobacterium tuberculosis , Preparações Farmacêuticas , Tuberculose , Antituberculosos , Humanos , Simulação de Dinâmica Molecular
4.
Cell Rep ; 29(11): 3580-3591.e4, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31825837

RESUMO

Nitrogen metabolism of Mycobacterium tuberculosis (Mtb) is crucial for the survival of this important pathogen in its primary human host cell, the macrophage, but little is known about the source(s) and their assimilation within this intracellular niche. Here, we have developed 15N-flux spectral ratio analysis (15N-FSRA) to explore Mtb's nitrogen metabolism; we demonstrate that intracellular Mtb has access to multiple amino acids in the macrophage, including glutamate, glutamine, aspartate, alanine, glycine, and valine; and we identify glutamine as the predominant nitrogen donor. Each nitrogen source is uniquely assimilated into specific amino acid pools, indicating compartmentalized metabolism during intracellular growth. We have discovered that serine is not available to intracellular Mtb, and we show that a serine auxotroph is attenuated in macrophages. This work provides a systems-based tool for exploring the nitrogen metabolism of intracellular pathogens and highlights the enzyme phosphoserine transaminase as an attractive target for the development of novel anti-tuberculosis therapies.


Assuntos
Interações Hospedeiro-Patógeno , Macrófagos/metabolismo , Mycobacterium tuberculosis/metabolismo , Nitrogênio/metabolismo , Glutamina/metabolismo , Humanos , Macrófagos/microbiologia , Mycobacterium tuberculosis/patogenicidade , Serina/metabolismo , Células THP-1 , Transaminases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA