Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 25(2): e202300603, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37934785

RESUMO

Mitochondrion has appeared as one of the important targets for anti-cancer therapy. Subsequently, small molecule anti-cancer drugs are directed to the mitochondria for improved therapeutic efficacy. However, simultaneous imaging and impairing mitochondria by a single probe remained a major challenge. To address this, herein Chimeric Small Molecules (CSMs) encompassing drugs, fluorophore and mitochondria homing moiety were designed and synthesized through a concise strategy. Screening of the CSMs in a panel of cancer cell lines (HeLa, MCF7, A549, and HCT-116) revealed that one of the CSMs comprising Indomethacin V exhibited remarkable cervical cancer cell (HeLa) killing (IC50 =0.97 µM). This lead CSM homed into the mitochondria of HeLa cells within 1 h followed by mitochondrial damage and reactive oxygen species (ROS) generation. This novel Indomethacin V-based CSM-mediated mitochondrial damage induced programmed cell death (apoptosis). We anticipate these CSMs can be used as tools to understand the drug effects in organelle chemical biology in diseased states.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Células HeLa , Antineoplásicos/química , Mitocôndrias/metabolismo , Indometacina/metabolismo , Indometacina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Linhagem Celular Tumoral , Neoplasias/metabolismo
2.
Chembiochem ; 24(1): e202200370, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36161823

RESUMO

Sub-cellular organelles play a critical role in a myriad biological phenomena. Consequently, organelle structures and functions are invariably highjacked in diverse diseases including metabolic disorders, aging, and cancer. Hence, illuminating organelle dynamics is crucial in understanding the diseased states as well as developing organelle-targeted next generation therapeutics. In this review, we outline the novel small molecules which show remarkable aggregation-induced emission (AIE) properties due to restriction in intramolecular motion (RIM). We outline the examples of small molecules developed to image organelles like mitochondria, endoplasmic reticulum (ER), Golgi, lysosomes, nucleus, cell membrane and lipid droplets. These AIEgens have tremendous potential for next-generation phototherapy.


Assuntos
Retículo Endoplasmático , Mitocôndrias , Mitocôndrias/metabolismo , Lisossomos , Gotículas Lipídicas , Núcleo Celular/metabolismo
3.
Chembiochem ; 24(19): e202300379, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37357962

RESUMO

Organelles are the working hubs of the cells. Hence, visualizing these organelles inside the cells is highly important for understanding their roles in pathological states and development of therapeutic strategies. Herein, we report the development of a novel highly substituted oxazoles with modular scaffolds (AIE-ER, AIE-Mito, and AIE-Lyso), which can home into endoplasmic reticulum (ER), mitochondria, and lysosomes inside the cells. These oxazoles showed remarkable aggregation-induced emission (AIE) property in water and in the solid state due to dual intramolecular H-bonding, which was confirmed by pH- and temperature-dependent fluorescence studies followed by molecular dynamics (MD) simulations and density functional theory (DFT) calculations. Confocal laser scanning microscopy studies revealed that AIE-ER, AIE-Mito, and AIE-Lyso efficiently homed into ER, mitochondria and lysosomes, respectively, in the HeLa cervical cancer cells and non-cancerous human retinal pigment epithelial RPE-1 cells within 3 h without showing any toxicity to the cells with high sub-cellular photostability. To the best of our knowledge, this is the first report of highly substituted oxazole-based small molecule AIEgens for organelle imaging. We anticipate these novel AIEgens have promise to image sub-cellular organelles in different diseased states as well as understanding the inter-organelle interactions towards the development of novel therapeutics.


Assuntos
Corantes Fluorescentes , Mitocôndrias , Humanos , Lisossomos , Retículo Endoplasmático , Oxazóis
4.
Chemistry ; 28(30): e202200203, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35302252

RESUMO

Endoplasmic reticulum (ER) has emerged as one of the interesting sub-cellular organelles due to its role in myriads of biological phenomena. Subsequently, visualization of the structure-function and dynamics of ER remained a major challenge to understand its involvement in different diseased states including cancer. To illuminate the ER, herein we have designed and synthesized γ-resorcyclic acid-based small molecules, which showed remarkable aggregation-induced emission (AIE) property in water. This AIE property was originated from the dual intramolecular H-bonding leading to the self-assembled 2D aggregation confirmed by pH- and temperature-dependent fluorescence quenching studies as well as scanning electron microscopy. These small molecules illuminated the sub-cellular ER in HeLa cervical cancer cells as well as non-cancerous RPE-1 human retinal epithelial cells within 1 h. These novel small molecules have the potential to light up ER chemical biology in diseased states.


Assuntos
Retículo Endoplasmático , Fluorescência , Células HeLa , Humanos
5.
Bioorg Med Chem ; 64: 116759, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35468536

RESUMO

Mitochondrion emerged as an important therapeutic target for anti-cancer strategy due to its involvement in cancer progression and development. However, progress of novel small molecules for selective targeting of mitochondria in cancer cells remained a major challenge. To address this, herein, through a concise synthetic strategy, we have synthesized a small molecule library of indomethacin and ibuprofen (non-steroidal anti-inflammatory drugs, NSAIDs) derivatives having triarylphosphonium moiety for mitochondria localization. Two of the library members were identified to induce mitochondrial damage through outer membrane permeabilization (MOMP) followed by generation of reactive oxygen species (ROS) leading to the remarkable MCF7 breast cancer cell death through apoptosis. These novel mitochondria targeted NSAID derivatives could open a new direction in understanding mitochondrial biology towards anti-cancer therapeutics in future.


Assuntos
Anti-Inflamatórios não Esteroides , Neoplasias , Anti-Inflamatórios não Esteroides/farmacologia , Apoptose , Ibuprofeno/metabolismo , Ibuprofeno/farmacologia , Indometacina/metabolismo , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Plant Cell Rep ; 41(3): 655-673, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34628530

RESUMO

High temperature challenges global crop production by limiting the growth and development of the reproductive structures and seed. It impairs the developmental stages of male and female gametogenesis, pollination, fertilization, endosperm formation and embryo development. Among these, the male reproductive processes are highly prone to abnormalities under high temperature at various stages of development. The disruption of source-sink balance is the main constraint for satisfactory growth of the reproductive structures which is disturbed at the level of sucrose import and utilization within the tissue. Seed development after fertilization is affected by modulation in the activity of enzymes involved in starch metabolism. In addition, the alteration in the seed-filling rate and its duration affects the seed weight and quality. The present review critically discusses the role of sugar metabolism in influencing the various stages of gamete and seed development under high temperature stress. It also highlights the interaction of the sugars with hormones that mediate the transport of sugars to sink tissues. The role of transcription factors for the regulation of sugar availability under high temperature has also been discussed. Further, the omics-based systematic investigation has been suggested to understand the synergistic or antagonistic interactions between sugars, hormones and reactive oxygen species at various points of sucrose flow from source to sink under high temperature stress.


Assuntos
Plantas , Sementes , Fertilização , Hormônios/metabolismo , Plantas/metabolismo , Sementes/metabolismo , Sacarose/metabolismo , Açúcares/metabolismo , Temperatura
7.
Chemistry ; 25(35): 8229-8235, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-30969447

RESUMO

Aggregation-induced-emission luminogens (AIEgens) have gained considerable attention as interesting tools for several biomedical applications, especially for bioimaging due to their brightness and photostability. Numerous AIEgens have been developed for lighting up the subcellular organelles to understand their forms and functions not only healthy but also unhealthy states, such as in cancer cells. However, there is lack of easily synthesizable, biocompatible small molecules for illuminating mitochondria (powerhouses) inside cells. To address this issue, an easy and short synthesis of new biocompatible hydrazide-hydrazone-based small molecules with remarkable aggregation-induced emission (AIE) properties is described. These small-molecule AIEgens showed hitherto unobserved AIE properties due to dual intramolecular H-bonding confirmed by theoretical calculation, pH- and temperature-dependent fluorescence and X-ray crystallographic studies. Confocal microscopy showed that these AIEgens were internalized into the HeLa cervical cancer cells without showing any cytotoxicity. One of the AIEgens was tagged with a triphenylphosphine (TPP) moiety, which successfully localized in the mitochondria of HeLa cells in a selective way compared to L929 noncancerous fibroblast cells. These unique hydrazide-hydrazone-based biocompatible AIEgens can serve as powerful tools to illuminate multiple subcellular organelles to elucidate their forms and functions in cancer cells for next-generation biomedical applications.


Assuntos
Materiais Biocompatíveis/química , Corantes Fluorescentes/química , Hidrazonas/química , Mitocôndrias/metabolismo , Linhagem Celular , Sobrevivência Celular , Simulação por Computador , Fibroblastos/citologia , Células HeLa , Humanos , Hidrazonas/síntese química , Mitocôndrias/ultraestrutura , Imagem Óptica , Compostos Organofosforados/química
8.
J Org Chem ; 83(3): 1358-1368, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29265816

RESUMO

Iron-catalyzed dehydrogenative cross-coupling of carbonyl compounds with aliphatic peroxide was developed under mild conditions. A library of linear alkylated and arylated peroxides are synthesized in good to excellent yield. This method is highly selective and general for a range of biologically important derivatives of 2-oxindole, barbituric acid, and 4-hydroxy coumarin with a good functional group tolerance and without the cleavage of the peroxide bond. This peroxidation reaction is upscalable to grams and also synthesizable in continuous flow with increased safety in short duration. Mechanistic investigation reveals Fe-(II) undergoes redox type process to generate the radical intermediates, which subsequently recombine selectively to form the stable peroxides. The potential of peroxides is evaluated by cell viability assay and found to exhibit the good anticancer activity with minimum IC50= 5.3 µM.


Assuntos
Antineoplásicos/síntese química , Ferro/química , Peróxidos/síntese química , Antineoplásicos/química , Catálise , Hidrogenação , Estrutura Molecular , Peróxidos/química
9.
Proc Natl Acad Sci U S A ; 109(28): 11294-9, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22733767

RESUMO

Nanoscale drug delivery vehicles have been harnessed extensively as carriers for cancer chemotherapeutics. However, traditional pharmaceutical approaches for nanoformulation have been a challenge with molecules that exhibit incompatible physicochemical properties, such as platinum-based chemotherapeutics. Here we propose a paradigm based on rational design of active molecules that facilitate supramolecular assembly in the nanoscale dimension. Using cisplatin as a template, we describe the synthesis of a unique platinum (II) tethered to a cholesterol backbone via a unique monocarboxylato and O→Pt coordination environment that facilitates nanoparticle assembly with a fixed ratio of phosphatidylcholine and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino (polyethylene glycol)-2000]. The nanoparticles formed exhibit lower IC(50) values compared with carboplatin or cisplatin in vitro, and are active in cisplatin-resistant conditions. Additionally, the nanoparticles exhibit significantly enhanced in vivo antitumor efficacy in murine 4T1 breast cancer and in K-Ras(LSL/+)/Pten(fl/fl) ovarian cancer models with decreased systemic- and nephro-toxicity. Our results indicate that integrating rational drug design and supramolecular nanochemistry can emerge as a powerful strategy for drug development. Furthermore, given that platinum-based chemotherapeutics form the frontline therapy for a broad range of cancers, the increased efficacy and toxicity profile indicate the constructed nanostructure could translate into a next-generation platinum-based agent in the clinics.


Assuntos
Antineoplásicos/farmacologia , Colesterol/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Rim/efeitos dos fármacos , Nanopartículas/química , Platina/administração & dosagem , Animais , Apoptose , Carcinoma Pulmonar de Lewis , Linhagem Celular Tumoral , Sobrevivência Celular , Colesterol/química , Cisplatino/administração & dosagem , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Concentração Inibidora 50 , Rim/metabolismo , Camundongos , Modelos Químicos , Nanotecnologia/métodos , Ácido Succínico/química
10.
Nanotechnology ; 25(44): 445101, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25302488

RESUMO

Tumor vasculature is critically dependent on platelet mediated hemostasis and disruption of the same can augment delivery of nano-formulation based chemotherapeutic agents which depend on enhanced permeability and retention for tumor penetration. Here, we evaluated the role of Clopidogrel, a well-known inhibitor of platelet aggregation, in potentiating the tumor cytotoxicity of cisplatin nano-formulation in a murine breast cancer model. In vivo studies in murine syngeneic 4T1 breast cancer model showed a significant greater penetration of macromolecular fluorescent nanoparticles after clopidogrel pretreatment. Compared to self-assembling cisplatin nanoparticles (SACNs), combination therapy with clopidogrel and SACN was associated with a 4 fold greater delivery of cisplatin to tumor tissue and a greater reduction in tumor growth as well as higher survival rate. Clopidogrel enhances therapeutic efficiency of novel cisplatin based nano-formulations agents by increasing tumor drug delivery and can be used as a potential targeting agent for novel nano-formulation based chemotherapeutics.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Cisplatino/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Mamárias Animais/tratamento farmacológico , Nanosferas/uso terapêutico , Inibidores da Agregação Plaquetária/administração & dosagem , Ticlopidina/análogos & derivados , Animais , Linhagem Celular Tumoral , Cisplatino/química , Clopidogrel , Neoplasias Mamárias Animais/irrigação sanguínea , Camundongos , Camundongos Endogâmicos BALB C , Nanosferas/química , Permeabilidade , Ticlopidina/administração & dosagem
11.
Bioorg Med Chem ; 22(16): 4430-44, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24947480

RESUMO

Natural product inspired compound collections are prevalidated due to the evolutionary selection of the natural product scaffolds. Their synthesis requires the development of novel strategies amenable to formats suitable for library build-up. We describe a method for the synthesis of an oxepane library inspired by the core structure of oxepane natural products endowed with multiple bioactivities. Core aspects of the strategy are the establishment of a one-pot method employing different immobilized scavengers, the employment of an enyne ring closing reaction and diversification by means of different transformations, for example, cycloadditions and cross-metathesis reactions. In total, a collection of 115 oxepanes was obtained in 5-6-step reaction sequences.


Assuntos
Produtos Biológicos/síntese química , Compostos Heterocíclicos/síntese química , Polímeros/química , Bibliotecas de Moléculas Pequenas/síntese química , Produtos Biológicos/química , Compostos Heterocíclicos/química , Conformação Molecular , Bibliotecas de Moléculas Pequenas/química
12.
Proc Natl Acad Sci U S A ; 108(17): 6805-10, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21415367

RESUMO

In Biology Oriented Synthesis the scaffolds of biologically relevant compound classes inspire the synthesis of focused compound collections enriched in bioactivity. This criterion is met by the structurally complex scaffolds of natural products (NPs) selected in evolution. The synthesis of NP-inspired compound collections approaching the complexity of NPs calls for the development of efficient synthetic methods. We have developed a one pot 4-7 step synthesis of mono-, bi-, and tricyclic oxepanes that resemble the core scaffolds of numerous NPs with diverse bioactivities. This sequence entails a ring-closing ene-yne metathesis reaction as key step and makes productive use of polymer-immobilized scavenger reagents. Biological profiling of a corresponding focused compound collection in a reporter gene assay monitoring for Wnt-signaling modulation revealed active Wntepanes. This unique class of small-molecule activators of the Wnt pathway modulates the van-Gogh-like receptor proteins (Vangl), which were previously identified in noncanonical Wnt signaling, and acts in synergy with the canonical activator protein (Wnt-3a).


Assuntos
Compostos Heterocíclicos , Transdução de Sinais/efeitos dos fármacos , Proteínas Wnt/metabolismo , Proteínas de Transporte/metabolismo , Células HEK293 , Células HeLa , Células Hep G2 , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Humanos , Proteína Wnt3 , Proteína Wnt3A
13.
Chem Asian J ; 19(11): e202400250, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38602248

RESUMO

Endoplasmic reticulum (ER) is one of the most important sub-cellular organelles which controls myriads of biological functions including protein biosynthesis with proper functional folded form, protein misfolding, protein transport into Golgi body for secretion, Ca2+ homeostasis and so on. Subsequently, dysregulation in ER function leads to ER stress followed by disease pathology like cancer. Hence, targeting ER in the cancer cells emerged as one of the futuristic strategies for cancer treatment. However, the major challenge is to selectively and specifically target ER in the sub-cellular milieu in the cancer tissues, due to the lack of ER targeting chemical moieties to recognize the ER markers. To address this, in the last decade, numerous biomaterials were explored to selectively impair and image ER in cancer cells to induce ER stress. This review outlines those biomaterials which consists of carbon and silicon materials, lipid nanoparticles (liposomes and micelles), supramolecular self-assembled nanostructures, cell membrane-coated nanoparticles and metallic nanoparticles. Moreover, we also discuss the challenges and possible solutions of this promising field to usher the readers towards next-generation ER targeted cancer therapy.


Assuntos
Materiais Biocompatíveis , Retículo Endoplasmático , Neoplasias , Humanos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Nanopartículas/química
14.
ACS Appl Bio Mater ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39047234

RESUMO

Lung cancer remains a lethal disease globally. Recently, the development and progression of lung cancer were strongly linked with mitochondrial dysfunction. Hence, targeting mitochondria in lung cancer can be an interesting alternative strategy for therapeutic applications. To address this, we have designed and synthesized a 3-methoxy-pyrrole-enamine-triphenylphosphonium cation-based library through a concise chemical strategy. Upon screening this library in cervical (HeLa), colon (HCT-116), breast (MCF7), and lung (A549) cancer cells, we identified a small molecule that self-assembled into nanoscale spherical particles with a positive surface charge. This nanoparticle was confined to the mitochondria to induce mitochondrial damage and produced reactive superoxide in A549 cells. This small molecule self-assembled nanoparticle-mediated mitochondrial damage triggered apoptosis leading to the remarkable killing of A549 cells. These 3-methoxy-pyrrole-enamine-triphenylphosphonium nanoparticles can be used as a tool to understand the chemical biology of mitochondria in lung cancer for chemotherapeutic applications.

15.
J Appl Genet ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773055

RESUMO

Waxy maize grains rich in amylopectin have emerged as a popular food and industrial raw materials. Here, a set of waxy inbreds having recessive waxy1 (wx1) gene derived through marker-assisted selection (MAS), and their original versions were evaluated for germination, seed vigour index-I and vigour index-II, electrical conductivity (EC) and enzymatic activities viz., dehydrogenase (DH), esterase (EST), peroxidase (POX), superoxide dismutase (SOD) and α-amylase (AMY). Waxy inbreds under study possessed average 97.8% amylopectin compared to 72.4% in original inbreds. Waxy versions showed 15.2% more test weight, 4.3% increase in germination, 22.7% higher seed vigour index-I and 28.3% higher seed vigour index-II, respectively, over the original inbreds. Further, activity of DH, EST, POX, SOD and AMY of MAS-derived waxy inbreds was more than that of original inbreds, whereas EC was less in improved inbreds compared to originals. Amylopectin exhibited strong positive correlations (r = 0.69 to 0.97**) with seed germination, vigour index-I and -II, DH, SOD, POX, EST and AMY activity. However, amylopectin showed negative correlation of - 0.82** with EC. Seed germination and seed vigour indices were also positively correlated with all enzymatic activities (r = 0.58 to 0.92**). The analysis revealed that waxy inbreds possess better seed vigour and enzymatic activities over traditional inbreds. This is the first report of synergistic effects of wx1 gene on seed germination, vigour and enzymatic activities in maize endosperm.

16.
Funct Plant Biol ; 512024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38326234

RESUMO

Sweet corn is one of the most popular vegetables worldwide. However, traditional shrunken2 (sh2 )-based sweet corn varieties are poor in nutritional quality. Here, we analysed the effect of (1) ß-carotene hydroxylase1 (crtRB1 ), (2) opaque2 (o2 ) and (3) o2+crtRB1 genes on nutritional quality, germination, seed vigour and physico-biochemical traits in a set of 27 biofortified sh2 -based sweet corn inbreds. The biofortified sweet corn inbreds recorded significantly higher concentrations of proA (16.47µg g-1 ), lysine (0.36%) and tryptophan (0.09%) over original inbreds (proA: 3.14µg g-1 , lysine: 0.18%, tryptophan: 0.04%). The crtRB1 -based inbreds had the lowest electrical conductivity (EC), whereas o2 -based inbreds possessed the highest EC. The o2 +crtRB1 -based inbreds showed similar EC to the original inbreds. Interestingly, o2 -based inbreds also had the lowest germination and seed vigour compared to original inbreds, whereas crtRB1 and o2 +crtRB1 introgressed sweet corn inbreds showed similar germination and seed vigour traits to their original versions. This suggested that the negative effect of o2 on germination, seed vigour and EC is nullified by crtRB1 in the double mutant sweet corn. Overall, o2 +crtRB1 -based sweet corn inbreds were found the most desirable over crtRB1 - and o2 -based inbreds alone.


Assuntos
Germinação , Zea mays , Zea mays/genética , Verduras , Lisina/genética , Lisina/farmacologia , Triptofano/genética , Triptofano/farmacologia , Sementes/genética , Genótipo
17.
Biomed Chromatogr ; 27(5): 575-82, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23070832

RESUMO

The sulfonylurea urea drug glyburide (glibenclamide) is widely used for the treatment of diabetes milletus and gestational diabetes. In previous studies monohydroxylated metabolites were identified and characterized for glyburide in different species, but the metabolite owing to the loss of cyclohexyl ring was identified only in mouse. Glyburide upon incubation with hepatic microsomes resulted in 10 metabolites for human. The current study identifies new metabolites of glyburide along with the hydroxylated metabolites that were reported earlier. The newly identified drug metabolites are dihydroxylated metabolites, a metabolite owing to the loss of cyclohexyl ring and one owing to hydroxylation with dehydrogenation. Among the 10 identified metabolites, there were six monohydroxylated metabolites, one dihydroxylated metabolite, two metabolites owing to hydroxylation and dehydrogenation, and one metabolite owing to the loss of cyclohexyl ring. New metabolites of glyburide were identified and characterized using liquid chromatography-diode array detector-quadruple-ion trap-mass spectrometry/mass spectrometry (LC-DAD-Q-TRAP-MS/MS). An enhanced mass scan-enhanced product ion scan with information-dependent acquisition mode in a Q-TRAP-MS/MS system was used to characterize the metabolites. Liquid chromatography with diode array detection was used as a complimentary technique to confirm and identify the metabolites. Metabolites formed in higher amounts were detected in both diode array detection and mass spectrometry detection.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Glibureto/metabolismo , Microssomos Hepáticos/metabolismo , Espectrometria de Massas em Tandem/métodos , Biotransformação , Glibureto/química , Glibureto/farmacocinética , Humanos , Hidrogenação , Hidroxilação , Masculino , Peso Molecular
18.
Phytother Res ; 27(10): 1548-56, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23208983

RESUMO

The purpose of this study was to investigate the potential pharmacokinetic interactions with natural products (such as piperine (PIP), gallic acid (GA) and cinnamic acid (CA)) and rosuvastatin (RSV) (a specific breast cancer resistance protein, BCRP substrate) in rats. In Caco2 cells, the polarized transport of RSV was effectively inhibited by PIP, CA and GA at concentration of 50 µM. After per oral (p.o.) coadministration of PIP, CA and GA (10 mg/kg) significantly increased intravenous exposure (AUC(last)) of RSV (1 mg/kg) by 73.5%, 62.9% and 53.3% (p < 0.05), respectively than alone group (control). Compared with the control (alone) group, p.o. coadministration of PIP, CA and GA (10 mg/kg) significantly increased the oral exposure (AUC(last)) of RSV (5 mg/kg) by 2.0-fold, 1.83-fold (p < 0.05) and 2.34 -fold (p < 0.05), respectively. Moreover, the cumulative biliary excretion of RSV (5 mg/kg, p.o.) was significantly decreased by 53.3, 33.4 and 39.2% at the end of 8 h after p.o. co-administration of PIP, CA and GA (10 mg/kg), respectively. Taken together, these results indicate that the natural products such as PIP, CA and GA significantly inhibit RSV transport in to bile and increased the plasma exposure (AUC(last)) of RSV.


Assuntos
Alcaloides/farmacologia , Benzodioxóis/farmacologia , Cinamatos/farmacologia , Fluorbenzenos/farmacocinética , Ácido Gálico/farmacologia , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Pirimidinas/farmacocinética , Sulfonamidas/farmacocinética , Administração Oral , Animais , Área Sob a Curva , Bile/química , Cães , Interações Medicamentosas , Fluorbenzenos/sangue , Células Madin Darby de Rim Canino , Masculino , Pirimidinas/sangue , Ratos , Ratos Sprague-Dawley , Rosuvastatina Cálcica , Sulfonamidas/sangue
19.
J Indian Assoc Pediatr Surg ; 18(1): 25-6, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23599580

RESUMO

Venous aneurysm of neck is a rare anomaly, usually presenting as a painless mass which increases in size on valsalva maneuver. A child with multiple aneurysms of the right common facial and external jugular veins diagnosed on Doppler ultrasonography and magnetic resonance venography is reported.

20.
ACS Omega ; 8(10): 8925-8935, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36936289

RESUMO

In recent years, mitochondrion (powerhouse of the cells) gained lots of interest as one of the unorthodox targets for futuristic cancer therapy. As a result, novel small molecules were developed to damage and image mitochondria in cancer models. In this context, aggregation-induced emission probes (AIEgens) received immense attention due to their applications in mitochondria-targeted biosensing, imaging, and biomedical theranostics. On the other hand, phototherapy (photodynamic and photothermal) has emerged as a powerful alternative to manage cancer due to its less invasive nature. However, merging these two areas to engineer mitochondria-targeted phototherapeutic probes for cancer diagnosis and treatment has remained a major challenge. In this mini-review, we will outline the development of novel mitochondria-targeted small molecule AIEgens as imaging agents and photosensitizers for photodynamic therapy along with dual photodymanic-phototheramal therapy and chemo-photodynamic therapy. We will also highlight the current challenges in developing mitochondria-targeted photothermal therapy probes for future biomedical theranostic applications to manage cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA