RESUMO
Bright, photostable, and nontoxic fluorescent contrast agents are critical for biological imaging. "Self-healing" dyes, in which triplet states are intramolecularly quenched, enable fluorescence imaging by increasing fluorophore brightness and longevity, while simultaneously reducing the generation of reactive oxygen species that promote phototoxicity. Here, we systematically examine the self-healing mechanism in cyanine-class organic fluorophores spanning the visible spectrum. We show that the Baird aromatic triplet-state energy of cyclooctatetraene can be physically altered to achieve order of magnitude enhancements in fluorophore brightness and signal-to-noise ratio in both the presence and absence of oxygen. We leverage these advances to achieve direct measurements of large-scale conformational dynamics within single molecules at submillisecond resolution using wide-field illumination and camera-based detection methods. These findings demonstrate the capacity to image functionally relevant conformational processes in biological systems in the kilohertz regime at physiological oxygen concentrations and shed important light on the multivariate parameters critical to self-healing organic fluorophore design.
Assuntos
Corantes Fluorescentes/química , Linhagem Celular , Fluorescência , Humanos , Microscopia de FluorescênciaRESUMO
The evolution of the multi-copy family of ribosomal RNA (rRNA) genes is unique in regard to its genetics and genome evolution. Paradoxically, rRNA genes are highly homogenized within and between individuals, yet they are globally distinct between species. Here, we discuss the implications for models of rRNA gene evolution in light of our recent discoveries that ribosomes bearing rRNA sequence variants can affect gene expression and physiology and that intra-individual rRNA alleles exhibit both context- and tissue-specific expression.
Assuntos
Evolução Molecular , Variação Genética , RNA Ribossômico/genética , Alelos , Animais , DNA Ribossômico/genética , Regulação da Expressão Gênica , Humanos , Especificidade de Órgãos , Biossíntese de ProteínasRESUMO
The article Implications of sequence variation on the evolution of rRNA, written by Matthew M. Parks, Chad M. Kurylo, Jake E. Batchelder, C. Theresa Vincent and Scott C. Blanchard, was originally published electronically on the publisher's internet portal (currently SpringerLink).
RESUMO
To quantify visual and spatial information in single cells with a throughput of thousands of cells per second, we developed Subcellular Localization Assay (SLA). This adaptation of Proximity Ligation Assay expands the capabilities of flow cytometry to include data relating to localization of proteins to and within organelles. We used SLA to detect the nuclear import of transcription factors across cell subsets in complex samples. We further measured intranuclear re-localization of target proteins across the cell cycle and upon DNA damage induction. SLA combines multiple single-cell methods to bring about a new dimension of inquiry and analysis in complex cell populations. © 2017 International Society for Advancement of Cytometry.
Assuntos
Citometria de Fluxo/métodos , Ensaios de Triagem em Larga Escala/métodos , Análise de Célula Única/métodos , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Dano ao DNA/genética , Humanos , Transporte Proteico/genética , Frações Subcelulares/ultraestruturaRESUMO
Survival in high-risk pediatric neuroblastoma has remained around 50% for the last 20 years, with immunotherapies and targeted therapies having had minimal impact. Here, we identify the small molecule CX-5461 as selectively cytotoxic to high-risk neuroblastoma and synergistic with low picomolar concentrations of topoisomerase I inhibitors in improving survival in vivo in orthotopic patient-derived xenograft neuroblastoma mouse models. CX-5461 recently progressed through phase I clinical trial as a first-in-human inhibitor of RNA-POL I. However, we also use a comprehensive panel of in vitro and in vivo assays to demonstrate that CX-5461 has been mischaracterized and that its primary target at pharmacologically relevant concentrations, is in fact topoisomerase II beta (TOP2B), not RNA-POL I. This is important because existing clinically approved chemotherapeutics have well-documented off-target interactions with TOP2B, which have previously been shown to cause both therapy-induced leukemia and cardiotoxicity-often-fatal adverse events, which can emerge several years after treatment. Thus, while we show that combination therapies involving CX-5461 have promising anti-tumor activity in vivo in neuroblastoma, our identification of TOP2B as the primary target of CX-5461 indicates unexpected safety concerns that should be examined in ongoing phase II clinical trials in adult patients before pursuing clinical studies in children.
Assuntos
DNA Topoisomerases Tipo II/metabolismo , Indóis/uso terapêutico , Morfolinas/uso terapêutico , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Pirimidinas/uso terapêutico , Sulfonamidas/uso terapêutico , Animais , Benzotiazóis , Western Blotting , Linhagem Celular Tumoral , Sinergismo Farmacológico , Ativação Enzimática/efeitos dos fármacos , Citometria de Fluxo , Imunofluorescência , Camundongos , Camundongos Nus , Simulação de Dinâmica Molecular , Naftiridinas , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Ribosome biogenesis is a canonical hallmark of cell growth and proliferation. Here we show that execution of Epithelial-to-Mesenchymal Transition (EMT), a migratory cellular program associated with development and tumor metastasis, is fueled by upregulation of ribosome biogenesis during G1/S arrest. This unexpected EMT feature is independent of species and initiating signal, and is accompanied by release of the repressive nucleolar chromatin remodeling complex (NoRC) from rDNA, together with recruitment of the EMT-driving transcription factor Snai1 (Snail1), RNA Polymerase I (Pol I) and the Upstream Binding Factor (UBF). EMT-associated ribosome biogenesis is also coincident with increased nucleolar recruitment of Rictor, an essential component of the EMT-promoting mammalian target of rapamycin complex 2 (mTORC2). Inhibition of rRNA synthesis in vivo differentiates primary tumors to a benign, Estrogen Receptor-alpha (ERα) positive, Rictor-negative phenotype and reduces metastasis. These findings implicate the EMT-associated ribosome biogenesis program with cellular plasticity, de-differentiation, cancer progression and metastatic disease.