Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(52): 21390-5, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23236140

RESUMO

For centuries ecologists have studied how the diversity and functional traits of plant and animal communities vary across biomes. In contrast, we have only just begun exploring similar questions for soil microbial communities despite soil microbes being the dominant engines of biogeochemical cycles and a major pool of living biomass in terrestrial ecosystems. We used metagenomic sequencing to compare the composition and functional attributes of 16 soil microbial communities collected from cold deserts, hot deserts, forests, grasslands, and tundra. Those communities found in plant-free cold desert soils typically had the lowest levels of functional diversity (diversity of protein-coding gene categories) and the lowest levels of phylogenetic and taxonomic diversity. Across all soils, functional beta diversity was strongly correlated with taxonomic and phylogenetic beta diversity; the desert microbial communities were clearly distinct from the nondesert communities regardless of the metric used. The desert communities had higher relative abundances of genes associated with osmoregulation and dormancy, but lower relative abundances of genes associated with nutrient cycling and the catabolism of plant-derived organic compounds. Antibiotic resistance genes were consistently threefold less abundant in the desert soils than in the nondesert soils, suggesting that abiotic conditions, not competitive interactions, are more important in shaping the desert microbial communities. As the most comprehensive survey of soil taxonomic, phylogenetic, and functional diversity to date, this study demonstrates that metagenomic approaches can be used to build a predictive understanding of how microbial diversity and function vary across terrestrial biomes.


Assuntos
Bactérias/genética , Ecossistema , Metagenoma/genética , Metagenômica/métodos , Microbiologia do Solo , Biodiversidade , Clima Desértico , Genes Bacterianos/genética , Análise de Componente Principal , RNA Ribossômico 16S/genética
2.
Proc Biol Sci ; 281(1795)2014 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-25274366

RESUMO

Soil biota play key roles in the functioning of terrestrial ecosystems, however, compared to our knowledge of above-ground plant and animal diversity, the biodiversity found in soils remains largely uncharacterized. Here, we present an assessment of soil biodiversity and biogeographic patterns across Central Park in New York City that spanned all three domains of life, demonstrating that even an urban, managed system harbours large amounts of undescribed soil biodiversity. Despite high variability across the Park, below-ground diversity patterns were predictable based on soil characteristics, with prokaryotic and eukaryotic communities exhibiting overlapping biogeographic patterns. Further, Central Park soils harboured nearly as many distinct soil microbial phylotypes and types of soil communities as we found in biomes across the globe (including arctic, tropical and desert soils). This integrated cross-domain investigation highlights that the amount and patterning of novel and uncharacterized diversity at a single urban location matches that observed across natural ecosystems spanning multiple biomes and continents.


Assuntos
Biodiversidade , Microbiologia do Solo , Solo , Dados de Sequência Molecular , Cidade de Nova Iorque , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , Análise de Sequência de DNA , Solo/parasitologia
3.
PLoS One ; 14(12): e0225711, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31790470

RESUMO

Direct transmission of bacteria to subsequent generations highlights the beneficial nature of host-bacteria relationships. In insects, this process is often mediated by the production of microbe-containing secretions. The objective of this study was to determine if the burying beetle, Nicrophorus defodiens, utilizes anal secretions to transmit adult digestive tract bacteria onto a small vertebrate carcass; thus creating the potential to aid in carcass preservation or pass digestive tract bacteria to their larval offspring. Using high-throughput Illumina sequencing of the 16S rRNA gene, we characterized bacterial communities of adult beetle digestive tracts, their anal secretions, and prepared mouse carcasses. We also examined unprepared carcass bacterial communities as a means to interpret community shifts that take place during carcass preservation. We found a vast reduction in diversity on prepared carcasses after anal secretion application. Overall, there was little similarity in bacterial communities among adult digestive tracts, anal secretions, and prepared carcasses, suggesting bacterial communities found in adult digestive tracts do not successfully colonize and achieve dominance on prepared carcasses by way of beetle anal secretions. We concluded that N. defodiens does not transmit their digestive tract bacterial communities to prepared carcasses in a wholesale manner, but may transmit key microbes, including core microbiome members, to preserved carcasses that may ultimately act to sustain larvae and serve as inocula for larval digestive tracts.


Assuntos
Canal Anal/microbiologia , Secreções Corporais/microbiologia , Besouros/microbiologia , Microbioma Gastrointestinal , Animais , Bactérias/classificação , Bactérias/genética , Biodiversidade , Sequenciamento de Nucleotídeos em Larga Escala
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA