Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ann Neurol ; 96(1): 1-20, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38568026

RESUMO

Clinical, pathological, and imaging evidence in multiple sclerosis (MS) suggests that a smoldering inflammatory activity is present from the earliest stages of the disease and underlies the progression of disability, which proceeds relentlessly and independently of clinical and radiological relapses (PIRA). The complex system of pathological events driving "chronic" worsening is likely linked with the early accumulation of compartmentalized inflammation within the central nervous system as well as insufficient repair phenomena and mitochondrial failure. These mechanisms are partially lesion-independent and differ from those causing clinical relapses and the formation of new focal demyelinating lesions; they lead to neuroaxonal dysfunction and death, myelin loss, glia alterations, and finally, a neuronal network dysfunction outweighing central nervous system (CNS) compensatory mechanisms. This review aims to provide an overview of the state of the art of neuropathological, immunological, and imaging knowledge about the mechanisms underlying the smoldering disease activity, focusing on possible early biomarkers and their translation into clinical practice. ANN NEUROL 2024;96:1-20.


Assuntos
Biomarcadores , Progressão da Doença , Esclerose Múltipla , Humanos , Biomarcadores/metabolismo , Esclerose Múltipla/patologia , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/metabolismo , Recidiva
2.
Ann Neurol ; 96(2): 276-288, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38780377

RESUMO

OBJECTIVE: To evaluate: (1) the distribution of gray matter (GM) atrophy in myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder (AQP4+NMOSD), and relapsing-remitting multiple sclerosis (RRMS); and (2) the relationship between GM volumes and white matter lesions in various brain regions within each disease. METHODS: A retrospective, multicenter analysis of magnetic resonance imaging data included patients with MOGAD/AQP4+NMOSD/RRMS in non-acute disease stage. Voxel-wise analyses and general linear models were used to evaluate the relevance of regional GM atrophy. For significant results (p < 0.05), volumes of atrophic areas are reported. RESULTS: We studied 135 MOGAD patients, 135 AQP4+NMOSD, 175 RRMS, and 144 healthy controls (HC). Compared with HC, MOGAD showed lower GM volumes in the temporal lobes, deep GM, insula, and cingulate cortex (75.79 cm3); AQP4+NMOSD in the occipital cortex (32.83 cm3); and RRMS diffusely in the GM (260.61 cm3). MOGAD showed more pronounced temporal cortex atrophy than RRMS (6.71 cm3), whereas AQP4+NMOSD displayed greater occipital cortex atrophy than RRMS (19.82 cm3). RRMS demonstrated more pronounced deep GM atrophy in comparison with MOGAD (27.90 cm3) and AQP4+NMOSD (47.04 cm3). In MOGAD, higher periventricular and cortical/juxtacortical lesions were linked to reduced temporal cortex, deep GM, and insula volumes. In RRMS, the diffuse GM atrophy was associated with lesions in all locations. AQP4+NMOSD showed no lesion/GM volume correlation. INTERPRETATION: GM atrophy is more widespread in RRMS compared with the other two conditions. MOGAD primarily affects the temporal cortex, whereas AQP4+NMOSD mainly involves the occipital cortex. In MOGAD and RRMS, lesion-related tract degeneration is associated with atrophy, but this link is absent in AQP4+NMOSD. ANN NEUROL 2024;96:276-288.


Assuntos
Aquaporina 4 , Atrofia , Autoanticorpos , Substância Cinzenta , Imageamento por Ressonância Magnética , Glicoproteína Mielina-Oligodendrócito , Neuromielite Óptica , Substância Branca , Humanos , Feminino , Aquaporina 4/imunologia , Neuromielite Óptica/patologia , Neuromielite Óptica/diagnóstico por imagem , Neuromielite Óptica/imunologia , Masculino , Glicoproteína Mielina-Oligodendrócito/imunologia , Adulto , Atrofia/patologia , Substância Cinzenta/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Branca/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/imunologia , Pessoa de Meia-Idade , Estudos Retrospectivos , Autoanticorpos/sangue , Esclerose Múltipla Recidivante-Remitente/patologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/imunologia , Adulto Jovem
3.
Brain ; 147(4): 1331-1343, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38267729

RESUMO

Cortical myelin loss and repair in multiple sclerosis (MS) have been explored in neuropathological studies, but the impact of these processes on neurodegeneration and the irreversible clinical progression of the disease remains unknown. Here, we evaluated in vivo cortical demyelination and remyelination in a large cohort of people with all clinical phenotypes of MS followed up for 5 years using magnetization transfer imaging (MTI), a technique that has been shown to be sensitive to myelin content changes in the cortex. We investigated 140 people with MS (37 clinically isolated syndrome, 71 relapsing-MS, 32 progressive-MS), who were clinically assessed at baseline and after 5 years and, along with 84 healthy controls, underwent a 3 T-MRI protocol including MTI at baseline and after 1 year. Changes in cortical volume over the radiological follow-up were computed with a Jacobian integration method. Magnetization transfer ratio was employed to calculate for each patient an index of cortical demyelination at baseline and of dynamic cortical demyelination and remyelination over the follow-up period. The three indices of cortical myelin content change were heterogeneous across patients but did not significantly differ across clinical phenotypes or treatment groups. Cortical remyelination, which tended to fail in the regions closer to CSF (-11%, P < 0.001), was extensive in half of the cohort and occurred independently of age, disease duration and clinical phenotype. Higher indices of cortical dynamic demyelination (ß = 0.23, P = 0.024) and lower indices of cortical remyelination (ß = -0.18, P = 0.03) were significantly associated with greater cortical atrophy after 1 year, independently of age and MS phenotype. While the extent of cortical demyelination predicted a higher probability of clinical progression after 5 years in the entire cohort [odds ratio (OR) = 1.2; P = 0.043], the impact of cortical remyelination in reducing the risk of accumulating clinical disability after 5 years was significant only in the subgroup of patients with shorter disease duration and limited extent of demyelination in cortical regions (OR = 0.86, P = 0.015, area under the curve = 0.93). In this subgroup, a 30% increase in cortical remyelination nearly halved the risk of clinical progression at 5 years, independently of clinical relapses. Overall, our results highlight the critical role of cortical myelin dynamics in the cascade of events leading to neurodegeneration and to the subsequent accumulation of irreversible disability in MS. Our findings suggest that early-stage myelin repair compensating for cortical myelin loss has the potential to prevent neuro-axonal loss and its long-term irreversible clinical consequences in people with MS.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Humanos , Bainha de Mielina/patologia , Esclerose Múltipla/patologia , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem , Esclerose Múltipla Crônica Progressiva/patologia , Progressão da Doença , Atrofia/patologia
4.
Neuroimage ; 298: 120775, 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39106936

RESUMO

Spinal cord (SC) atrophy obtained from structural magnetic resonance imaging has gained relevance as an indicator of neurodegeneration in various neurological disorders. The common method to assess SC atrophy is by comparing numerical differences of the cross-sectional spinal cord area (CSA) between time points. However, this indirect approach leads to considerable variability in the obtained results. Studies showed that this limitation can be overcome by using a registration-based technique. The present study introduces the Structural Image Evaluation using Normalization of Atrophy on the Spinal Cord (SIENA-SC), which is an adapted version of the original SIENA method, designed to directly calculate the percentage of SC volume change over time from clinical brain MRI acquired with an extended field of view to cover the superior part of the cervical SC. In this work, we compared SIENA-SC with the Generalized Boundary Shift Integral (GBSI) and the CSA change. On a scan-rescan dataset, SIENA-SC was shown to have the lowest measurement error than the other two methods. When comparing a group of 190 Healthy Controls with a group of 65 Multiple Sclerosis patients, SIENA-SC provided significantly higher yearly rates of atrophy in patients than in controls and a lower sample size when measured for treatment effect sizes of 50%, 30% and 10%. Our findings indicate that SIENA-SC is a robust, reproducible, and sensitive approach for assessing longitudinal changes in spinal cord volume, providing neuroscientists with an accessible and automated tool able to reduce the need for manual intervention and minimize variability in measurements.

5.
J Neurol Sci ; 464: 123163, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39128160

RESUMO

BACKGROUND: Vascular mild cognitive impairment (VMCI) is a transitional condition that may evolve into Vascular Dementia(VaD). Hippocampal volume (HV) is suggested as an early marker for VaD, the role of white matter lesions (WMLs) in neurodegeneration remains debated. OBJECTIVES: Evaluate HV and WMLs as predictive markers of VaD in VMCI patients by assessing: (i)baseline differences in HV and WMLs between converters to VaD and non-converters, (ii) predictive power of HV and WMLs for VaD, (iii) associations between HV, WMLs, and cognitive decline, (iv)the role of WMLs on HV. METHODS: This longitudinal multicenter study included 110 VMCI subjects (mean age:74.33 ± 6.63 years, 60males/50females) from the VMCI-Tuscany Study database. Subjects underwent brain MRI and cognitive testing, with 2-year follow-up data on VaD progression. HV and WMLs were semi-automatically segmented and measured. ANCOVA assessed group differences, while linear and logistic regression models evaluated predictive power. RESULTS: After 2 years, 32/110 VMCI patients progressed to VaD. Converting patients had lower HV(p = 0.015) and higher lesion volumes in the posterior thalamic radiation (p = 0.046), splenium of the corpus callosum (p = 0.016), cingulate gyrus (p = 0.041), and cingulum hippocampus(p = 0.038). HV alone did not fully explain progression (p = 0.059), but combined with WMLs volume, the model was significant (p = 0.035). The best prediction model (p = 0.001) included total HV (p = 0.004) and total WMLs volume of the posterior thalamic radiation (p = 0.005) and cingulate gyrus (p = 0.005), achieving 80% precision, 81% specificity, and 74% sensitivity. Lower HV were linked to poorer performance on the Rey Auditory-Verbal Learning Test delayed recall (RAVLT) and Mini Mental State Examination (MMSE). CONCLUSIONS: HV and WMLs are significant predictors of progression from VMCI to VaD. Lower HV correlate with worse cognitive performance on RAVLT and MMSE tests.

6.
J Neurol ; 271(8): 4897-4908, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38743090

RESUMO

BACKGROUND: Research work has shown that hippocampal subfields are atrophic to varying extents in multiple sclerosis (MS) patients. However, studies examining the functional implications of subfield-specific hippocampal damage in early MS are limited. We aim to gain insights into the relationship between hippocampal atrophy and memory function by investigating the correlation between global and regional hippocampal atrophy and memory performance in early MS patients. METHODS: From the Italian Neuroimaging Network Initiative (INNI) dataset, we selected 3D-T1-weighted brain MRIs of 219 early relapsing remitting (RR)MS and 246 healthy controls (HC) to identify hippocampal atrophic areas. At the time of MRI, patients underwent Selective-Reminding-Test (SRT) and Spatial-Recall-Test (SPART) and were classified as mildly (MMI-MS: n.110) or severely (SMI-MS: n:109) memory impaired, according to recently proposed cognitive phenotypes. RESULTS: Early RRMS showed lower hippocampal volumes compared to HC (p < 0.001), while these did not differ between MMI-MS and SMI-MS. In MMI-MS, lower hippocampal volumes correlated with worse memory tests (r = 0.23-0.37, p ≤ 0.01). Atrophic voxels were diffuse in the hippocampus but more prevalent in cornu ammonis (CA, 79%) than in tail (21%). In MMI-MS, decreased subfield volumes correlated with decreases in memory, particularly in the right CA1 (SRT-recall: r = 0.38; SPART: r = 0.34, p < 0.01). No correlations were found in the SMI-MS group. CONCLUSION: Hippocampal atrophy spreads from CA to tail from early disease stages. Subfield hippocampal atrophy is associated with memory impairment in MMI-MS, while this correlation is lost in SMI-MS. This plays in favor of a limited capacity for an adaptive functional reorganization of the hippocampi in MS patients.


Assuntos
Atrofia , Hipocampo , Imageamento por Ressonância Magnética , Transtornos da Memória , Esclerose Múltipla Recidivante-Remitente , Humanos , Esclerose Múltipla Recidivante-Remitente/patologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/complicações , Esclerose Múltipla Recidivante-Remitente/fisiopatologia , Masculino , Hipocampo/patologia , Hipocampo/diagnóstico por imagem , Feminino , Atrofia/patologia , Adulto , Transtornos da Memória/etiologia , Transtornos da Memória/patologia , Transtornos da Memória/diagnóstico por imagem , Pessoa de Meia-Idade , Testes Neuropsicológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA