Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Malar J ; 23(1): 68, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443939

RESUMO

BACKGROUND: Genetic surveillance of the Plasmodium falciparum parasite shows great promise for helping National Malaria Control Programmes (NMCPs) assess parasite transmission. Genetic metrics such as the frequency of polygenomic (multiple strain) infections, genetic clones, and the complexity of infection (COI, number of strains per infection) are correlated with transmission intensity. However, despite these correlations, it is unclear whether genetic metrics alone are sufficient to estimate clinical incidence. METHODS: This study examined parasites from 3147 clinical infections sampled between the years 2012-2020 through passive case detection (PCD) across 16 clinic sites spread throughout Senegal. Samples were genotyped with a 24 single nucleotide polymorphism (SNP) molecular barcode that detects parasite strains, distinguishes polygenomic (multiple strain) from monogenomic (single strain) infections, and identifies clonal infections. To determine whether genetic signals can predict incidence, a series of Poisson generalized linear mixed-effects models were constructed to predict the incidence level at each clinical site from a set of genetic metrics designed to measure parasite clonality, superinfection, and co-transmission rates. RESULTS: Model-predicted incidence was compared with the reported standard incidence data determined by the NMCP for each clinic and found that parasite genetic metrics generally correlated with reported incidence, with departures from expected values at very low annual incidence (< 10/1000/annual [‰]). CONCLUSIONS: When transmission is greater than 10 cases per 1000 annual parasite incidence (annual incidence > 10‰), parasite genetics can be used to accurately infer incidence and is consistent with superinfection-based hypotheses of malaria transmission. When transmission was < 10‰, many of the correlations between parasite genetics and incidence were reversed, which may reflect the disproportionate impact of importation and focal transmission on parasite genetics when local transmission levels are low.


Assuntos
Malária , Superinfecção , Humanos , Senegal/epidemiologia , Incidência , Plasmodium falciparum/genética
2.
Proc Natl Acad Sci U S A ; 117(36): 22042-22050, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32843339

RESUMO

Malaria vector control may be compromised by resistance to insecticides in vector populations. Actions to mitigate against resistance rely on surveillance using standard susceptibility tests, but there are large gaps in the monitoring data across Africa. Using a published geostatistical ensemble model, we have generated maps that bridge these gaps and consider the likelihood that resistance exceeds recommended thresholds. Our results show that this model provides more accurate next-year predictions than two simpler approaches. We have used the model to generate district-level maps for the probability that pyrethroid resistance in Anopheles gambiae s.l. exceeds the World Health Organization thresholds for susceptibility and confirmed resistance. In addition, we have mapped the three criteria for the deployment of piperonyl butoxide-treated nets that mitigate against the effects of metabolic resistance to pyrethroids. This includes a critical review of the evidence for presence of cytochrome P450-mediated metabolic resistance mechanisms across Africa. The maps for pyrethroid resistance are available on the IR Mapper website, where they can be viewed alongside the latest survey data.


Assuntos
Anopheles/efeitos dos fármacos , Resistência a Inseticidas , Inseticidas/farmacologia , Malária/transmissão , Controle de Mosquitos/métodos , Mosquitos Vetores/efeitos dos fármacos , África , Animais , Anopheles/fisiologia , Humanos , Mosquiteiros Tratados com Inseticida , Mosquitos Vetores/fisiologia , Piretrinas/farmacologia
3.
PLoS Med ; 18(10): e1003799, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34618814

RESUMO

J. Kevin Baird and colleagues, examine and discuss the estimated global burden of vivax malaria and it's biological, clinical, and public health complexity.


Assuntos
Efeitos Psicossociais da Doença , Internacionalidade , Malária Vivax/epidemiologia , Plasmodium vivax/fisiologia , Animais , Geografia , Humanos , Incidência , Malária Vivax/genética , Malária Vivax/parasitologia , Parasitos/fisiologia , Saúde Pública , Fatores de Risco , Incerteza
4.
PLoS Med ; 18(6): e1003614, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34061843

RESUMO

BACKGROUND: In 2017, an estimated 14 million cases of Plasmodium vivax malaria were reported from Asia, Central and South America, and the Horn of Africa. The clinical burden of vivax malaria is largely driven by its ability to form dormant liver stages (hypnozoites) that can reactivate to cause recurrent episodes of malaria. Elimination of both the blood and liver stages of the parasites ("radical cure") is required to achieve a sustained clinical response and prevent ongoing transmission of the parasite. Novel treatment options and point-of-care diagnostics are now available to ensure that radical cure can be administered safely and effectively. We quantified the global economic cost of vivax malaria and estimated the potential cost benefit of a policy of radical cure after testing patients for glucose-6-phosphate dehydrogenase (G6PD) deficiency. METHODS AND FINDINGS: Estimates of the healthcare provider and household costs due to vivax malaria were collated and combined with national case estimates for 44 endemic countries in 2017. These provider and household costs were compared with those that would be incurred under 2 scenarios for radical cure following G6PD screening: (1) complete adherence following daily supervised primaquine therapy and (2) unsupervised treatment with an assumed 40% effectiveness. A probabilistic sensitivity analysis generated credible intervals (CrIs) for the estimates. Globally, the annual cost of vivax malaria was US$359 million (95% CrI: US$222 to 563 million), attributable to 14.2 million cases of vivax malaria in 2017. From a societal perspective, adopting a policy of G6PD deficiency screening and supervision of primaquine to all eligible patients would prevent 6.1 million cases and reduce the global cost of vivax malaria to US$266 million (95% CrI: US$161 to 415 million), although healthcare provider costs would increase by US$39 million. If perfect adherence could be achieved with a single visit, then the global cost would fall further to US$225 million, equivalent to $135 million in cost savings from the baseline global costs. A policy of unsupervised primaquine reduced the cost to US$342 million (95% CrI: US$209 to 532 million) while preventing 2.1 million cases. Limitations of the study include partial availability of country-level cost data and parameter uncertainty for the proportion of patients prescribed primaquine, patient adherence to a full course of primaquine, and effectiveness of primaquine when unsupervised. CONCLUSIONS: Our modelling study highlights a substantial global economic burden of vivax malaria that could be reduced through investment in safe and effective radical cure achieved by routine screening for G6PD deficiency and supervision of treatment. Novel, low-cost interventions for improving adherence to primaquine to ensure effective radical cure and widespread access to screening for G6PD deficiency will be critical to achieving the timely global elimination of P. vivax.


Assuntos
Antimaláricos/economia , Antimaláricos/uso terapêutico , Custos de Medicamentos , Saúde Global/economia , Malária Vivax/tratamento farmacológico , Malária Vivax/economia , Primaquina/economia , Primaquina/uso terapêutico , Adolescente , Adulto , Antimaláricos/efeitos adversos , Criança , Pré-Escolar , Tomada de Decisão Clínica , Redução de Custos , Análise Custo-Benefício , Terapia Diretamente Observada , Feminino , Testes Genéticos/economia , Deficiência de Glucosefosfato Desidrogenase/sangue , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Deficiência de Glucosefosfato Desidrogenase/economia , Deficiência de Glucosefosfato Desidrogenase/genética , Gastos em Saúde , Hemólise/efeitos dos fármacos , Humanos , Incidência , Lactente , Recém-Nascido , Malária Vivax/epidemiologia , Masculino , Adesão à Medicação , Modelos Econômicos , Seleção de Pacientes , Primaquina/efeitos adversos , Indução de Remissão , Resultado do Tratamento , Adulto Jovem
5.
PLoS Comput Biol ; 16(3): e1007707, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32203520

RESUMO

In order to monitor progress towards malaria elimination, it is crucial to be able to measure changes in spatio-temporal transmission. However, common metrics of malaria transmission such as parasite prevalence are under powered in elimination contexts. China has achieved major reductions in malaria incidence and is on track to eliminate, having reporting zero locally-acquired malaria cases in 2017 and 2018. Understanding the spatio-temporal pattern underlying this decline, especially the relationship between locally-acquired and imported cases, can inform efforts to maintain elimination and prevent re-emergence. This is particularly pertinent in Yunnan province, where the potential for local transmission is highest. Using a geo-located individual-level dataset of cases recorded in Yunnan province between 2011 and 2016, we introduce a novel Bayesian framework to model a latent diffusion process and estimate the joint likelihood of transmission between cases and the number of cases with unobserved sources of infection. This is used to estimate the case reproduction number, Rc. We use these estimates within spatio-temporal geostatistical models to map how transmission varied over time and space, estimate the timeline to elimination and the risk of resurgence. We estimate the mean Rc between 2011 and 2016 to be 0.171 (95% CI = 0.165, 0.178) for P. vivax cases and 0.089 (95% CI = 0.076, 0.103) for P. falciparum cases. From 2014 onwards, no cases were estimated to have a Rc value above one. An unobserved source of infection was estimated to be moderately likely (p>0.5) for 19/ 611 cases and high (p>0.8) for 2 cases, suggesting very high levels of case ascertainment. Our estimates suggest that, maintaining current intervention efforts, Yunnan is unlikely to experience sustained local transmission up to 2020. However, even with a mean of 0.005 projected up to 2020, locally-acquired cases are possible due to high levels of importation.


Assuntos
Monitoramento Epidemiológico , Malária , China/epidemiologia , Biologia Computacional , Erradicação de Doenças , Sistemas de Informação Geográfica , Humanos , Malária/epidemiologia , Malária/prevenção & controle , Malária/transmissão , Análise Espaço-Temporal
6.
Malar J ; 20(1): 359, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34461902

RESUMO

BACKGROUND: Malaria elimination is the goal for Bioko Island, Equatorial Guinea. Intensive interventions implemented since 2004 have reduced prevalence, but progress has stalled in recent years. A challenge for elimination has been malaria infections in residents acquired during travel to mainland Equatorial Guinea. The present article quantifies how off-island contributes to remaining malaria prevalence on Bioko Island, and investigates the potential role of a pre-erythrocytic vaccine in making further progress towards elimination. METHODS: Malaria transmission on Bioko Island was simulated using a model calibrated based on data from the Malaria Indicator Surveys (MIS) from 2015 to 2018, including detailed travel histories and malaria positivity by rapid-diagnostic tests (RDTs), as well as geospatial estimates of malaria prevalence. Mosquito population density was adjusted to fit local transmission, conditional on importation rates under current levels of control and within-island mobility. The simulations were then used to evaluate the impact of two pre-erythrocytic vaccine distribution strategies: mass treat and vaccinate, and prophylactic vaccination for off-island travellers. Lastly, a sensitivity analysis was performed through an ensemble of simulations fit to the Bayesian joint posterior probability distribution of the geospatial prevalence estimates. RESULTS: The simulations suggest that in Malabo, an urban city containing 80% of the population, there are some pockets of residual transmission, but a large proportion of infections are acquired off-island by travellers to the mainland. Outside of Malabo, prevalence was mainly attributable to local transmission. The uncertainty in the local transmission vs. importation is lowest within Malabo and highest outside. Using a pre-erythrocytic vaccine to protect travellers would have larger benefits than using the vaccine to protect residents of Bioko Island from local transmission. In simulations, mass treatment and vaccination had short-lived benefits, as malaria prevalence returned to current levels as the vaccine's efficacy waned. Prophylactic vaccination of travellers resulted in longer-lasting reductions in prevalence. These projections were robust to underlying uncertainty in prevalence estimates. CONCLUSIONS: The modelled outcomes suggest that the volume of malaria cases imported from the mainland is a partial driver of continued endemic malaria on Bioko Island, and that continued elimination efforts on must account for human travel activity.


Assuntos
Controle de Doenças Transmissíveis/métodos , Malária/prevenção & controle , Viagem , Guiné Equatorial/epidemiologia , Humanos , Malária/epidemiologia , Prevalência
7.
Malar J ; 20(1): 122, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648499

RESUMO

In malaria-endemic countries, prioritizing intervention deployment to areas that need the most attention is crucial to ensure continued progress. Global and national policy makers increasingly rely on epidemiological data and mathematical modelling to help optimize health decisions at the sub-national level. The Demographic and Health Surveys (DHS) Program is a critical data source for understanding subnational malaria prevalence and intervention coverage, which are used for parameterizing country-specific models of malaria transmission. However, data to estimate indicators at finer resolutions are limited, and surveys questions have a narrow scope. Examples from the Nigeria DHS are used to highlight gaps in the current survey design. Proposals are then made for additional questions and expansions to the DHS and Malaria Indicator Survey sampling strategy that would advance the data analyses and modelled estimates that inform national policy recommendations. Collaboration between the DHS Program, national malaria control programmes, the malaria modelling community, and funders is needed to address the highlighted data challenges.


Assuntos
Controle de Doenças Transmissíveis/organização & administração , Política de Saúde , Malária/prevenção & controle , Nigéria , Inquéritos e Questionários
8.
Lancet ; 394(10195): 332-343, 2019 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-31229233

RESUMO

BACKGROUND: Plasmodium vivax exacts a significant toll on health worldwide, yet few efforts to date have quantified the extent and temporal trends of its global distribution. Given the challenges associated with the proper diagnosis and treatment of P vivax, national malaria programmes-particularly those pursuing malaria elimination strategies-require up to date assessments of P vivax endemicity and disease impact. This study presents the first global maps of P vivax clinical burden from 2000 to 2017. METHODS: In this spatial and temporal modelling study, we adjusted routine malariometric surveillance data for known biases and used socioeconomic indicators to generate time series of the clinical burden of P vivax. These data informed Bayesian geospatial models, which produced fine-scale predictions of P vivax clinical incidence and infection prevalence over time. Within sub-Saharan Africa, where routine surveillance for P vivax is not standard practice, we combined predicted surfaces of Plasmodium falciparum with country-specific ratios of P vivax to P falciparum. These results were combined with surveillance-based outputs outside of Africa to generate global maps. FINDINGS: We present the first high-resolution maps of P vivax burden. These results are combined with those for P falciparum (published separately) to form the malaria estimates for the Global Burden of Disease 2017 study. The burden of P vivax malaria decreased by 41·6%, from 24·5 million cases (95% uncertainty interval 22·5-27·0) in 2000 to 14·3 million cases (13·7-15·0) in 2017. The Americas had a reduction of 56·8% (47·6-67·0) in total cases since 2000, while South-East Asia recorded declines of 50·5% (50·3-50·6) and the Western Pacific regions recorded declines of 51·3% (48·0-55·4). Europe achieved zero P vivax cases during the study period. Nonetheless, rates of decline have stalled in the past five years for many countries, with particular increases noted in regions affected by political and economic instability. INTERPRETATION: Our study highlights important spatial and temporal patterns in the clinical burden and prevalence of P vivax. Amid substantial progress worldwide, plateauing gains and areas of increased burden signal the potential for challenges that are greater than expected on the road to malaria elimination. These results support global monitoring systems and can inform the optimisation of diagnosis and treatment where P vivax has most impact. FUNDING: Bill & Melinda Gates Foundation and the Wellcome Trust.


Assuntos
Doenças Endêmicas/estatística & dados numéricos , Malária Vivax/epidemiologia , África/epidemiologia , América/epidemiologia , Sudeste Asiático/epidemiologia , Teorema de Bayes , Saúde Global , Humanos , Oceania/epidemiologia , Vigilância da População , Análise Espaço-Temporal
9.
Lancet ; 394(10195): 322-331, 2019 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-31229234

RESUMO

BACKGROUND: Since 2000, the scale-up of malaria control interventions has substantially reduced morbidity and mortality caused by the disease globally, fuelling bold aims for disease elimination. In tandem with increased availability of geospatially resolved data, malaria control programmes increasingly use high-resolution maps to characterise spatially heterogeneous patterns of disease risk and thus efficiently target areas of high burden. METHODS: We updated and refined the Plasmodium falciparum parasite rate and clinical incidence models for sub-Saharan Africa, which rely on cross-sectional survey data for parasite rate and intervention coverage. For malaria endemic countries outside of sub-Saharan Africa, we produced estimates of parasite rate and incidence by applying an ecological downscaling approach to malaria incidence data acquired via routine surveillance. Mortality estimates were derived by linking incidence to systematically derived vital registration and verbal autopsy data. Informed by high-resolution covariate surfaces, we estimated P falciparum parasite rate, clinical incidence, and mortality at national, subnational, and 5 × 5 km pixel scales with corresponding uncertainty metrics. FINDINGS: We present the first global, high-resolution map of P falciparum malaria mortality and the first global prevalence and incidence maps since 2010. These results are combined with those for Plasmodium vivax (published separately) to form the malaria estimates for the Global Burden of Disease 2017 study. The P falciparum estimates span the period 2000-17, and illustrate the rapid decline in burden between 2005 and 2017, with incidence declining by 27·9% and mortality declining by 42·5%. Despite a growing population in endemic regions, P falciparum cases declined between 2005 and 2017, from 232·3 million (95% uncertainty interval 198·8-277·7) to 193·9 million (156·6-240·2) and deaths declined from 925 800 (596 900-1 341 100) to 618 700 (368 600-952 200). Despite the declines in burden, 90·1% of people within sub-Saharan Africa continue to reside in endemic areas, and this region accounted for 79·4% of cases and 87·6% of deaths in 2017. INTERPRETATION: High-resolution maps of P falciparum provide a contemporary resource for informing global policy and malaria control planning, programme implementation, and monitoring initiatives. Amid progress in reducing global malaria burden, areas where incidence trends have plateaued or increased in the past 5 years underscore the fragility of hard-won gains against malaria. Efforts towards elimination should be strengthened in such areas, and those where burden remained high throughout the study period. FUNDING: Bill & Melinda Gates Foundation.


Assuntos
Malária Falciparum/epidemiologia , Mortalidade/tendências , África Subsaariana/epidemiologia , Estudos Transversais , Saúde Global , Humanos , Incidência , Malária Falciparum/mortalidade , Objetivos Organizacionais , Prevalência , Análise Espaço-Temporal
10.
BMC Med ; 18(1): 26, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32036785

RESUMO

BACKGROUND: Many malaria-endemic areas experience seasonal fluctuations in case incidence as Anopheles mosquito and Plasmodium parasite life cycles respond to changing environmental conditions. Identifying location-specific seasonality characteristics is useful for planning interventions. While most existing maps of malaria seasonality use fixed thresholds of rainfall, temperature, and/or vegetation indices to identify suitable transmission months, we construct a statistical modelling framework for characterising the seasonal patterns derived directly from monthly health facility data. METHODS: With data from 2669 of the 3247 health facilities in Madagascar, a spatiotemporal regression model was used to estimate seasonal patterns across the island. In the absence of catchment population estimates or the ability to aggregate to the district level, this focused on the monthly proportions of total annual cases by health facility level. The model was informed by dynamic environmental covariates known to directly influence seasonal malaria trends. To identify operationally relevant characteristics such as the transmission start months and associated uncertainty measures, an algorithm was developed and applied to model realisations. A seasonality index was used to incorporate burden information from household prevalence surveys and summarise 'how seasonal' locations are relative to their surroundings. RESULTS: Positive associations were detected between monthly case proportions and temporally lagged covariates of rainfall and temperature suitability. Consistent with the existing literature, model estimates indicate that while most parts of Madagascar experience peaks in malaria transmission near March-April, the eastern coast experiences an earlier peak around February. Transmission was estimated to start in southeast districts before southwest districts, suggesting that indoor residual spraying should be completed in the same order. In regions where the data suggested conflicting seasonal signals or two transmission seasons, estimates of seasonal features had larger deviations and therefore less certainty. CONCLUSIONS: Monthly health facility data can be used to establish seasonal patterns in malaria burden and augment the information provided by household prevalence surveys. The proposed modelling framework allows for evidence-based and cohesive inferences on location-specific seasonal characteristics. As health surveillance systems continue to improve, it is hoped that more of such data will be available to improve our understanding and planning of intervention strategies.


Assuntos
Instalações de Saúde/estatística & dados numéricos , Malária/epidemiologia , Análise de Dados , Humanos , Incidência , Madagáscar , Estações do Ano
11.
Malar J ; 19(1): 374, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33081784

RESUMO

BACKGROUND: Anti-malarial drugs play a critical role in reducing malaria morbidity and mortality, but their role is mediated by their effectiveness. Effectiveness is defined as the probability that an anti-malarial drug will successfully treat an individual infected with malaria parasites under routine health care delivery system. Anti-malarial drug effectiveness (AmE) is influenced by drug resistance, drug quality, health system quality, and patient adherence to drug use; its influence on malaria burden varies through space and time. METHODS: This study uses data from 232 efficacy trials comprised of 86,776 infected individuals to estimate the artemisinin-based and non-artemisinin-based AmE for treating falciparum malaria between 1991 and 2019. Bayesian spatiotemporal models were fitted and used to predict effectiveness at the pixel-level (5 km × 5 km). The median and interquartile ranges (IQR) of AmE are presented for all malaria-endemic countries. RESULTS: The global effectiveness of artemisinin-based drugs was 67.4% (IQR: 33.3-75.8), 70.1% (43.6-76.0) and 71.8% (46.9-76.4) for the 1991-2000, 2006-2010, and 2016-2019 periods, respectively. Countries in central Africa, a few in South America, and in the Asian region faced the challenge of lower effectiveness of artemisinin-based anti-malarials. However, improvements were seen after 2016, leaving only a few hotspots in Southeast Asia where resistance to artemisinin and partner drugs is currently problematic and in the central Africa where socio-demographic challenges limit effectiveness. The use of artemisinin-based combination therapy (ACT) with a competent partner drug and having multiple ACT as first-line treatment choice sustained high levels of effectiveness. High levels of access to healthcare, human resource capacity, education, and proximity to cities were associated with increased effectiveness. Effectiveness of non-artemisinin-based drugs was much lower than that of artemisinin-based with no improvement over time: 52.3% (17.9-74.9) for 1991-2000 and 55.5% (27.1-73.4) for 2011-2015. Overall, AmE for artemisinin-based and non-artemisinin-based drugs were, respectively, 29.6 and 36% below clinical efficacy as measured in anti-malarial drug trials. CONCLUSIONS: This study provides evidence that health system performance, drug quality and patient adherence influence the effectiveness of anti-malarials used in treating uncomplicated falciparum malaria. These results provide guidance to countries' treatment practises and are critical inputs for malaria prevalence and incidence models used to estimate national level malaria burden.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Resistência a Medicamentos , Malária Falciparum/prevenção & controle , Plasmodium falciparum/efeitos dos fármacos , Humanos
12.
N Engl J Med ; 375(25): 2435-2445, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-27723434

RESUMO

BACKGROUND: Malaria control has not been routinely informed by the assessment of subnational variation in malaria deaths. We combined data from the Malaria Atlas Project and the Global Burden of Disease Study to estimate malaria mortality across sub-Saharan Africa on a grid of 5 km2 from 1990 through 2015. METHODS: We estimated malaria mortality using a spatiotemporal modeling framework of geolocated data (i.e., with known latitude and longitude) on the clinical incidence of malaria, coverage of antimalarial drug treatment, case fatality rate, and population distribution according to age. RESULTS: Across sub-Saharan Africa during the past 15 years, we estimated that there was an overall decrease of 57% (95% uncertainty interval, 46 to 65) in the rate of malaria deaths, from 12.5 (95% uncertainty interval, 8.3 to 17.0) per 10,000 population in 2000 to 5.4 (95% uncertainty interval, 3.4 to 7.9) in 2015. This led to an overall decrease of 37% (95% uncertainty interval, 36 to 39) in the number of malaria deaths annually, from 1,007,000 (95% uncertainty interval, 666,000 to 1,376,000) to 631,000 (95% uncertainty interval, 394,000 to 914,000). The share of malaria deaths among children younger than 5 years of age ranged from more than 80% at a rate of death of more than 25 per 10,000 to less than 40% at rates below 1 per 10,000. Areas with high malaria mortality (>10 per 10,000) and low coverage (<50%) of insecticide-treated bed nets and antimalarial drugs included much of Nigeria, Angola, and Cameroon and parts of the Central African Republic, Congo, Guinea, and Equatorial Guinea. CONCLUSIONS: We estimated that there was an overall decrease of 57% in the rate of death from malaria across sub-Saharan Africa over the past 15 years and identified several countries in which high rates of death were associated with low coverage of antimalarial treatment and prevention programs. (Funded by the Bill and Melinda Gates Foundation and others.).


Assuntos
Malária Falciparum/mortalidade , Plasmodium falciparum/isolamento & purificação , Adolescente , Adulto , África Subsaariana/epidemiologia , Antimaláricos/uso terapêutico , Criança , Pré-Escolar , Controle de Doenças Transmissíveis/tendências , Mapeamento Geográfico , Humanos , Lactente , Recém-Nascido , Mosquiteiros Tratados com Inseticida , Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Modelos Estatísticos , Mortalidade/tendências , Carga Parasitária , Prevalência , Adulto Jovem
13.
Malar J ; 18(1): 411, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31818297

RESUMO

Malawi is midway through its current Malaria Strategic Plan 2017-2022, which aims to reduce malaria incidence and deaths by at least 50% by 2022. Malariometric data are available with health surveillance data housed in District Health Information Software 2 (DHIS2) and household survey data from two recent Malaria Indicator Surveys (MIS) and a Demographic and Health Survey (DHS). Strengths and weaknesses of the data were discussed during a consultative meeting in Lilongwe, Malawi in July 2019. The first 3 days included in-depth exploration and analysis of surveillance and survey data by 13 participants from the National Malaria Control Programme, district health offices, and partner organizations. Key indicators derived from both DHIS2 and MIS/DHS sources were analysed with three case studies, and presented to stakeholders on the fourth day of the meeting. Applications of the findings to programmatic decision-making and strategic plan evaluation were critiqued and discussed.


Assuntos
Confiabilidade dos Dados , Demografia/estatística & dados numéricos , Características da Família , Instalações de Saúde/estatística & dados numéricos , Malária/prevenção & controle , Adolescente , Adulto , Estudos de Casos e Controles , Pré-Escolar , Congressos como Assunto , Consultores , Feminino , Humanos , Malária/transmissão , Malaui , Pessoa de Meia-Idade , Gravidez , Avaliação de Programas e Projetos de Saúde , Adulto Jovem
14.
Malar J ; 18(1): 195, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186004

RESUMO

BACKGROUND: The disease burden of Plasmodium falciparum malaria illness is generally estimated using one of two distinct approaches: either by transforming P. falciparum infection prevalence estimates into incidence estimates using conversion formulae; or through adjustment of counts of recorded P. falciparum-positive fever cases from clinics. Whilst both ostensibly seek to evaluate P. falciparum disease burden, there is an implicit and problematic difference in the metric being estimated. The first enumerates only symptomatic malaria cases, while the second enumerates all febrile episodes coincident with a P. falciparum infection, regardless of the fever's underlying cause. METHODS: Here, a novel approach was used to triangulate community-based data sources capturing P. falciparum infection, fever, and care-seeking to estimate the fraction of P. falciparum-positive fevers amongst children under 5 years of age presenting at health facilities that are attributable to P. falciparum infection versus other non-malarial causes. A Bayesian hierarchical model was used to assign probabilities of malaria-attributable fever (MAF) and non-malarial febrile illness (NMFI) to children under five from a dataset of 41 surveys from 21 countries in sub-Saharan Africa conducted between 2006 and 2016. Using subsequent treatment-seeking outcomes, the proportion of MAF and NMFI amongst P. falciparum-positive febrile children presenting at public clinics was estimated. RESULTS: Across all surveyed malaria-positive febrile children who sought care at public clinics across 41 country-years in sub-Saharan Africa, P. falciparum infection was estimated to be the underlying cause of only 37.7% (31.1-45.4, 95% CrI) of P. falciparum-positive fevers, with significant geographical and temporal heterogeneity between surveys. CONCLUSIONS: These findings highlight the complex nature of the P. falciparum burden amongst children under 5 years of age and indicate that for many children presenting at health clinics, a positive P. falciparum diagnosis and a fever does not necessarily mean P. falciparum is the underlying cause of the child's symptoms, and thus other causes of illness should always be investigated, in addition to prescribing an effective anti-malarial medication. In addition to providing new large-scale estimates of malaria-attributable fever prevalence, the results presented here improve comparability between different methods for calculating P. falciparum disease burden, with significant implications for national and global estimation of malaria burden.


Assuntos
Coinfecção/epidemiologia , Efeitos Psicossociais da Doença , Febre/epidemiologia , Malária Falciparum/complicações , África Subsaariana/epidemiologia , Pré-Escolar , Métodos Epidemiológicos , Instalações de Saúde , Humanos , Lactente , Recém-Nascido , Prevalência
15.
BMC Med ; 16(1): 71, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29788968

RESUMO

BACKGROUND: Reliable measures of disease burden over time are necessary to evaluate the impact of interventions and assess sub-national trends in the distribution of infection. Three Malaria Indicator Surveys (MISs) have been conducted in Madagascar since 2011. They provide a valuable resource to assess changes in burden that is complementary to the country's routine case reporting system. METHODS: A Bayesian geostatistical spatio-temporal model was developed in an integrated nested Laplace approximation framework to map the prevalence of Plasmodium falciparum malaria infection among children from 6 to 59 months in age across Madagascar for 2011, 2013 and 2016 based on the MIS datasets. The model was informed by a suite of environmental and socio-demographic covariates known to influence infection prevalence. Spatio-temporal trends were quantified across the country. RESULTS: Despite a relatively small decrease between 2013 and 2016, the prevalence of malaria infection has increased substantially in all areas of Madagascar since 2011. In 2011, almost half (42.3%) of the country's population lived in areas of very low malaria risk (<1% parasite prevalence), but by 2016, this had dropped to only 26.7% of the population. Meanwhile, the population in high transmission areas (prevalence >20%) increased from only 2.2% in 2011 to 9.2% in 2016. A comparison of the model-based estimates with the raw MIS results indicates there was an underestimation of the situation in 2016, since the raw figures likely associated with survey timings were delayed until after the peak transmission season. CONCLUSIONS: Malaria remains an important health problem in Madagascar. The monthly and annual prevalence maps developed here provide a way to evaluate the magnitude of change over time, taking into account variability in survey input data. These methods can contribute to monitoring sub-national trends of malaria prevalence in Madagascar as the country aims for geographically progressive elimination.


Assuntos
Malária/epidemiologia , Plasmodium falciparum/patogenicidade , Pré-Escolar , Feminino , História do Século XXI , Humanos , Lactente , Madagáscar , Malária Falciparum/epidemiologia , Masculino , Prevalência , Inquéritos e Questionários
16.
Malar J ; 17(1): 42, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29357870

RESUMO

The hypnozoite reservoir of Plasmodium vivax represents both the greatest obstacle and opportunity for ultimately eradicating this species. It is silent and cannot be diagnosed until it awakens and provokes a clinical attack with attendant morbidity, risk of mortality, and opportunities for onward transmission. The only licensed drug that kills hypnozoites is primaquine, which attacks the hypnozoite reservoir but imposes serious obstacles in doing so-at hypnozoitocidal doses, it invariably causes a threatening acute haemolytic anaemia in patients having an inborn deficiency in glucose-6-phosphate dehydrogenase (G6PD), affecting about 8% of people living in malaria endemic nations. That problem excludes a large number of people from safe and effective treatment of the latent stage of vivax malaria: the G6PD deficient, pregnant or lactating women, and young infants. These groups were estimated to comprise 14.3% of populations resident in the 95 countries with endemic vivax malaria. Another important obstacle regarding primaquine in the business of killing hypnozoites is its apparent metabolism to an active metabolite exclusively via cytochrome P-450 isozyme 2D6 (CYP2D6). Natural polymorphisms of this allele create genotypes expressing impaired enzymes that occur in over 20% of people living in Southeast Asia, where more than half of P. vivax infections occur globally. Taken together, the estimated frequencies of these primaquine ineligibles due to G6PD toxicity or impaired CYP2D6 activity composed over 35% of the populations at risk of vivax malaria. Much more detailed work is needed to refine these estimates, derive probabilities of error for them, and improve their ethnographic granularity in order to inform control and elimination strategy and tactics.


Assuntos
Antimaláricos/uso terapêutico , Citocromo P-450 CYP2D6/genética , Deficiência de Glucosefosfato Desidrogenase/genética , Malária Vivax/tratamento farmacológico , Polimorfismo de Nucleotídeo Único , Primaquina/uso terapêutico , Sudeste Asiático/epidemiologia , Citocromo P-450 CYP2D6/metabolismo , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Humanos , Recidiva
17.
Malar J ; 17(1): 352, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30290815

RESUMO

BACKGROUND: The Malaria Atlas Project (MAP) has worked to assemble and maintain a global open-access database of spatial malariometric data for over a decade. This data spans various formats and topics, including: geo-located surveys of malaria parasite rate; global administrative boundary shapefiles; and global and regional rasters representing the distribution of malaria and associated illnesses, blood disorders, and intervention coverage. MAP has recently released malariaAtlas, an R package providing a direct interface to MAP's routinely-updated malariometric databases and research outputs. METHODS AND RESULTS: The current paper reviews the functionality available in malariaAtlas and highlights its utility for spatial epidemiological analysis of malaria. malariaAtlas enables users to freely download, visualise and analyse global malariometric data within R. Currently available data types include: malaria parasite rate and vector occurrence point data; subnational administrative boundary shapefiles; and a large suite of rasters covering a diverse range of metrics related to malaria research. malariaAtlas is here used in two mock analyses to illustrate how this data may be incorporated into a standard R workflow for spatial analysis. CONCLUSIONS: malariaAtlas is the first open-access R-interface to malariometric data, providing a new and reproducible means of accessing such data within a freely available and commonly used statistical software environment. In this way, the malariaAtlas package aims to contribute to the environment of data-sharing within the malaria research community.


Assuntos
Anopheles/fisiologia , Anopheles/parasitologia , Bases de Dados Factuais , Malária/epidemiologia , Mosquitos Vetores/fisiologia , Mosquitos Vetores/parasitologia , Software , Distribuição Animal , Animais , Humanos , Incidência , Malária/parasitologia , Prevalência
18.
Malar J ; 17(1): 241, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925430

RESUMO

The goal to eliminate malaria from the Asia-Pacific by 2030 will require the safe and widespread delivery of effective radical cure of malaria. In October 2017, the Asia Pacific Malaria Elimination Network Vivax Working Group met to discuss the impediments to primaquine (PQ) radical cure, how these can be overcome and the methodological difficulties in assessing clinical effectiveness of radical cure. The salient discussions of this meeting which involved 110 representatives from 18 partner countries and 21 institutional partner organizations are reported. Context specific strategies to improve adherence are needed to increase understanding and awareness of PQ within affected communities; these must include education and health promotion programs. Lessons learned from other disease programs highlight that a package of approaches has the greatest potential to change patient and prescriber habits, however optimizing the components of this approach and quantifying their effectiveness is challenging. In a trial setting, the reactivity of participants results in patients altering their behaviour and creates inherent bias. Although bias can be reduced by integrating data collection into the routine health care and surveillance systems, this comes at a cost of decreasing the detection of clinical outcomes. Measuring adherence and the factors that relate to it, also requires an in-depth understanding of the context and the underlying sociocultural logic that supports it. Reaching the elimination goal will require innovative approaches to improve radical cure for vivax malaria, as well as the methods to evaluate its effectiveness.


Assuntos
Antimaláricos/uso terapêutico , Malária Vivax/prevenção & controle , Plasmodium vivax/efeitos dos fármacos , Primaquina/uso terapêutico , Cooperação e Adesão ao Tratamento/estatística & dados numéricos , Ásia , Humanos , Ilhas do Pacífico , Resultado do Tratamento
19.
Malar J ; 15: 20, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26754795

RESUMO

BACKGROUND: The proportion of individuals who seek treatment for fever is an important quantity in understanding access to and use of health systems, as well as for interpreting data on disease incidence from routine surveillance systems. For many malaria endemic countries (MECs), treatment-seeking information is available from national household surveys. The aim of this paper was to assemble sub-national estimates of treatment-seeking behaviours and to predict national treatment-seeking measures for all MECs lacking household survey data. METHODS: Data on treatment seeking for fever were obtained from Demographic and Health Surveys, Malaria Indicator Surveys and Multiple Cluster Indicator Surveys for every MEC and year that data were available. National-level social, economic and health-related variables were gathered from the World Bank as putative covariates of treatment-seeking rates. A generalized additive mixed model (GAMM) was used to estimate treatment-seeking behaviours for countries where survey data were unavailable. Two separate models were developed to predict the proportion of fever cases that would seek treatment at (1) a public health facility or (2) from any kind of treatment provider. RESULTS: Treatment-seeking data were available for 74 MECs and modelled for the remaining 24. GAMMs found that the percentage of pregnant women receiving prenatal care, vaccination rates, education level, government health expenditure, and GDP growth were important predictors for both categories of treatment-seeking outcomes. Treatment-seeking rates, which varied both within and among regions, revealed that public facilities were not always the primary facility type used. CONCLUSIONS: Estimates of treatment-seeking rates show how health services are utilized and help correct reported malaria case numbers to obtain more accurate measures of disease burden. The assembled and modelled data demonstrated that while treatment-seeking rates have overall increased over time, access remains low in some malaria endemic regions and utilization of government services is in some areas limited.


Assuntos
Antimaláricos/uso terapêutico , Serviços de Saúde/estatística & dados numéricos , Malária/tratamento farmacológico , Modelos Teóricos , Antimaláricos/administração & dosagem , Feminino , Inquéritos Epidemiológicos , Humanos , Gravidez
20.
Malar J ; 14: 191, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25948111

RESUMO

BACKGROUND: Though essential to the development and evaluation of national malaria control programmes, precise enumeration of the clinical illness burden of malaria in endemic countries remains challenging where local surveillance systems are incomplete. Strategies to infer annual incidence rates from parasite prevalence survey compilations have proven effective in the specific case of Plasmodium falciparum, but have yet to be developed for Plasmodium vivax. Moreover, defining the relationship between P. vivax prevalence and clinical incidence may also allow levels of endemicity to be inferred for areas where the information balance is reversed, that is, incident case numbers are more widely gathered than parasite surveys; both applications ultimately facilitating cartographic estimates of P. vivax transmission intensity and its ensuring disease burden. METHODS: A search for active case detection surveys was conducted and the recorded incidence values were matched to local, contemporary parasite rate measures and classified to geographic zones of differing relapse phenotypes. A hierarchical Bayesian model was fitted to these data to quantify the relationship between prevalence and incidence while accounting for variation among relapse zones. RESULTS: The model, fitted with 176 concurrently measured P. vivax incidence and prevalence records, was a linear regression of the logarithm of incidence against the logarithm of age-standardized prevalence. Specific relationships for the six relapse zones where data were available were drawn, as well as a pooled overall relationship. The slope of the curves varied among relapse zones; zones with short predicted time to relapse had steeper slopes than those observed to contain long-latency relapse phenotypes. CONCLUSIONS: The fitted relationships, along with appropriate uncertainty metrics, allow for estimates of clinical incidence of known confidence to be made from wherever P. vivax prevalence data are available. This is a prerequisite for cartographic-based inferences about the global burden of morbidity due to P. vivax, which will be used to inform control efforts.


Assuntos
Doenças Endêmicas , Malária Vivax/epidemiologia , Modelos Teóricos , Parasitemia/epidemiologia , Plasmodium vivax/fisiologia , Teorema de Bayes , Humanos , Incidência , Malária Vivax/parasitologia , Parasitemia/parasitologia , Prevalência , Recidiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA