RESUMO
Pest control methods that can target pest species with limited environmental impacts are a conservation and economic priority. Species-specific pest control using RNA interference is a challenging but promising avenue in developing the next generation of pest management. We investigate the feasibility of manipulating a biological invader's immune system using double-stranded RNA (dsRNA) in order to increase susceptibility to naturally occurring pathogens. We used the invasive Argentine ant as a model, targeting the immunity-associated genes Spaetzle and Dicer-1 with dsRNA. We show that feeding with Spaetzle dsRNA can result in partial target gene silencing for up to 28 days in the laboratory and 5 days in the field. Dicer-1 dsRNA only resulted in partial gene knockdown after 2 days in the laboratory. Double-stranded RNA treatments were associated with significant gene expression disruptions across immune pathways in the laboratory and to a lower extent in the field. In total, 12 viruses and four bacteria were found in these ant populations. Some changes in viral loads in dsRNA-treated groups were observed. For example, Linepithema humile Polycipivirus 2 (LhuPCV2) loads increased after 2 days of treatment with Spaetzle and Dicer-1 dsRNA treatments in the laboratory. After treatment with the dsRNA in the field, after 5 days the virus Linepithema humile toti-like virus 1 (LhuTLV1) was significantly more abundant. However, immune pathway disruption did not result in a consistent increase in microbial infections, nor did it alter ant abundance in the field. Some viruses even declined in abundance after dsRNA treatment. Our study explored the feasibility of lowering a pest's immunity as a control tool. We demonstrate that it is possible to alter immune gene expression of pest species and pathogen loads, although in our specific system the affected pathogens did not appear to influence pest abundance. We provide suggestions on future directions for dsRNA-mediated immune disruption in pest species, including potential avenues to improve dsRNA delivery as well as the importance of pest and pathogen biology. Double-stranded RNA targeting immune function might be especially useful for pest control in systems in which viruses or other microorganisms are prevalent and have the potential to be pathogenic.
Assuntos
Formigas , Vírus , Animais , RNA de Cadeia Dupla , Inativação Gênica , Interferência de RNA , Vírus/genéticaRESUMO
Emerging infectious diseases (EIDs) are a global threat to honeybees, and spillover from managed bees threaten wider insect populations. Deformed wing virus (DWV), a widespread virus that has become emergent in conjunction with the spread of the mite Varroa destructor, is thought to be partly responsible for global colony losses. The arrival of Varroa in honeybee populations causes a dramatic loss of viral genotypic diversity, favouring a few virulent strains. Here, we investigate DWV spillover in an invasive Hawaiian population of the wasp, Vespula pensylvanica, a honeybee predator and honey-raider. We show that Vespula underwent a parallel loss in DWV variant diversity upon the arrival of Varroa, despite the mite being a honeybee specialist. The observed shift in Vespula DWV and the variant-sharing between Vespula and Apis suggest that these wasps can acquire DWV directly or indirectly from honeybees. Apis prey items collected from Vespula foragers were positive for DWV, indicating predation is a possible route of transmission. We also sought cascading effects of DWV shifts in a broader Vespula pathogen community. We identified concurrent changes in a suite of additional pathogens, as well as shifts in the associations between these pathogens in Vespula. These findings reveal how hidden effects of the Varroa mite can, via spillover, transform the composition of pathogens in interacting species, with potential knock-on effects for entire pathogen communities.
Assuntos
Abelhas/parasitologia , Interações Hospedeiro-Patógeno , Vírus de Insetos/fisiologia , Vírus de RNA/fisiologia , Varroidae/fisiologia , Vespas/virologia , Animais , Abelhas/fisiologia , Abelhas/virologia , Cadeia Alimentar , Havaí , Interações Hospedeiro-Parasita , Vírus de Insetos/genética , Comportamento Predatório , Vírus de RNA/genética , Vespas/fisiologiaRESUMO
Despite the mitochondrion's long-recognized role in energy production, mitochondrial DNA (mtDNA) variation commonly found in natural populations was assumed to be effectively neutral. However, variation in mtDNA has now been increasingly linked to phenotypic variation in life history traits and fitness. We examined whether the relative fitness in native and invasive common wasp (Vespula vulgaris) populations in Belgium and New Zealand (NZ), respectively, can be linked to mtDNA variation. Social wasp colonies in NZ were smaller with comparatively fewer queen cells, indicating a reduced relative fitness in the invaded range. Interestingly, queen cells in this population were significantly larger leading to larger queen offspring. By sequencing 1,872 bp of the mitochondrial genome, we determined mitochondrial haplotypes and detected reduced genetic diversity in NZ. Three common haplotypes in NZ frequently produced many queens, whereas the four rare haplotypes produced significantly fewer or no queens. The entire mitochondrial genome for each of these haplotypes was sequenced to identify polymorphisms associated with fitness reduction. We found 16 variable sites; however, no nonsynonymous mutation that was clearly causing impaired mitochondrial function was detected. We discuss how detected variants may alter secondary structures, gene expression or mito-nuclear interactions, or could be associated with nuclear-encoded variation. Whatever the ultimate mechanism, we show reduced fitness and mtDNA variation in an invasive wasp population as well as specific mtDNA variants associated with fitness variation within this population. Ours is one of only a few studies that confirm fitness impacts of mtDNA variation in wild nonmodel populations.
Assuntos
Variação Genética , Espécies Introduzidas , Mitocôndrias/genética , Vespas/genética , Animais , Bélgica , DNA Circular/genética , Genética Populacional , Genoma Mitocondrial , Geografia , Haplótipos/genética , Nova Zelândia , Análise de Sequência de DNARESUMO
A series of N,N-bis(glycityl)amines with promising anti-cancer activity were prepared via the reductive amination of pentoses and hexoses, and subsequently screened for their ability to selectively inhibit the growth of cancerous versus non-cancerous cells. For the first time, we show that this class of compounds possesses anti-proliferative activity, and, while the selective killing of brain cancer (LN18) cells versus matched (SVG-P12) cells was modest, several of the amines, including d-arabinitylamine 1a and d-fucitylamine 1g, exhibited low micromolar IC50 values for HL60 cells. Moreover, these two amines showed good selectivity towards HL60 cells when compared to non-cancerous HEK-293 cells. The compounds also showed low micromolar inhibition of the leukaemic cell line, THP-1. The modes of action of amines 1a and 1g were then determined using yeast chemical genetics, whereby it was established that both compounds affect similar but distinct sets of biochemical pathways. Notably purine nucleoside monophosphate biosynthesis was identified as an enriched mechanism. The rapid synthesis of the amines and their unique mode of action thus make them attractive targets for further development as anti-cancer drugs.
Assuntos
Amino Açúcares/farmacologia , Antineoplásicos/farmacologia , Álcoois Açúcares/farmacologia , Amino Açúcares/síntese química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Doxorrubicina/farmacologia , Células HEK293 , Humanos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Álcoois Açúcares/síntese química , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismoRESUMO
BACKGROUND: Tumor formation and spread via the circulatory and lymphatic drainage systems is associated with metabolic reprogramming that often includes increased glycolytic metabolism relative to mitochondrial energy production. However, cells within a tumor are not identical due to genetic change, clonal evolution and layers of epigenetic reprogramming. In addition, cell hierarchy impinges on metabolic status while tumor cell phenotype and metabolic status will be influenced by the local microenvironment including stromal cells, developing blood and lymphatic vessels and innate and adaptive immune cells. Mitochondrial mutations and changes in mitochondrial electron transport contribute to metabolic remodeling in cancer in ways that are poorly understood. SCOPE OF REVIEW: This review concerns the role of mitochondria, mitochondrial mutations and mitochondrial electron transport function in tumorigenesis and metastasis. MAJOR CONCLUSIONS: It is concluded that mitochondrial electron transport is required for tumor initiation, growth and metastasis. Nevertheless, defects in mitochondrial electron transport that compromise mitochondrial energy metabolism can contribute to tumor formation and spread. These apparently contradictory phenomena can be reconciled by cells in individual tumors in a particular environment adapting dynamically to optimally balance mitochondrial genome changes and bioenergetic status. GENERAL SIGNIFICANCE: Tumors are complex evolving biological systems characterized by genetic and adaptive epigenetic changes. Understanding the complexity of these changes in terms of bioenergetics and metabolic changes will permit the development of better combination anticancer therapies. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Assuntos
Carcinogênese/genética , Transporte de Elétrons/genética , Mitocôndrias/genética , Metástase Neoplásica/genética , Animais , Humanos , Mutação , Microambiente TumoralRESUMO
The Varroa destructor mite is a devastating parasite of honey bees; however the negative effects of varroa parasitism are exacerbated by its role as an efficient vector of the honey bee pathogen, Deformed wing virus (DWV). While no direct treatment for DWV infection is available for beekeepers to use on their hives, RNA interference (RNAi) has been widely explored as a possible biopesticide approach for a range of pests and pathogens. This study tested the effectiveness of three DWV-specific dsRNA sequences to lower DWV loads and symptoms in honey bees reared from larvae in laboratory mini-hives containing bees and varroa. The effects of DWV-dsRNA treatment on bees parasitised and non-parasitised by varroa mites during development were investigated. Additionally, the impact of DWV-dsRNA on viral loads and gene expression in brood-parasitising mites was assessed using RNA-sequencing. Bees parasitised during development had significantly higher DWV levels compared to non-parasitised bees. However, DWV-dsRNA did not significantly reduce DWV loads or symptoms in mini-hive reared bees, possibly due to sequence divergence between the DWV variants present in bees and varroa and the specific DWV-dsRNA sequences used. Varroa mites from DWV-dsRNA treated mini-hives did not show evidence of an elevated RNAi response or significant difference in DWV levels. Overall, our findings show that RNAi is not always successful, and multiple factors including pathogen diversity and transmission route may impact its efficiency.
Assuntos
Vírus de RNA , Urticária , Varroidae , Abelhas/genética , Animais , Carga Viral , Vírus de RNA/genética , RNA de Cadeia DuplaRESUMO
Invasive paper wasps such as Polistes dominula are a major pest and problem for biodiversity around the globe. Safe and highly targeted methods for the control of these and other social wasp populations are needed. We attempted to identify potentially-lethal gene targets that could be used on adult paper wasps in a gene silencing or RNA interference (RNAi) approach. Double-stranded RNA (dsRNA) was designed to target genes for which silencing has proven lethal in other insects. dsRNA was provided either orally to foragers or directly injected into the wasps. We also provided the dsRNA unprotected or protected from degradation by gut nucleases in two different forms (lipofectamine and carbon quantum dots). The effects of oral delivery of 22 different gene targets to forager wasps was evaluated. The expression of five different genes was successfully reduced following dsRNA ingestion or injection. These gene targets included the FACT complex subunit spt16 (DRE4) and RNA-binding protein fusilli (FUSILLI), both of which have been previously shown to have potential as lethal targets for pest control in other insects. However, we found no evidence of significant increases in adult wasp mortality following ingestion or injection of dsRNA for these genes when compared with control treatments in our experiments. The methods we used to protect the dsRNA from digestive degradation altered gene expression but similarly did not influence wasp mortality. Our results indicate that while many of the same gene targets can be silenced and induce mortality in other insects, dsRNA and RNAi approaches may not be useful for paper wasp control.
Assuntos
Vespas , Animais , Vespas/genética , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Inativação Gênica , Insetos/genética , Interferência de RNA , Expressão GênicaRESUMO
The parasitic mite Varroa destructor is a leading cause of mortality for Western honey bee (Apis mellifera) colonies around the globe. We sought to confirm the presence and likely introduction of only one V. destructor haplotype in New Zealand, and describe the viral community within both V. destructor mites and the bees that they parasitise. A 1232 bp fragment from mitochondrial gene regions suggests the likely introduction of only one V. destructor haplotype to New Zealand. Seventeen viruses were found in bees. The most prevalent and abundant was the Deformed wing virus A (DWV-A) strain, which explained 95.0% of the variation in the viral community of bees. Black queen cell virus, Sacbrood virus, and Varroa destructor virus 2 (VDV-2) played secondary roles. DWV-B and the Israeli acute paralysis virus appeared absent from New Zealand. Ten viruses were observed in V. destructor, with > 99.9% of viral reads from DWV-A and VDV-2. Substantially more variation in viral loads was observed in bees compared to mites. Where high levels of VDV-2 occurred in mites, reduced DWV-A occurred in both the mites and the bees co-occurring within the same hive. Where there were high loads of DWV-A in mites, there were typically high viral loads in bees.
Assuntos
Parasitos , Vírus de RNA , Varroidae , Vírus , Animais , Abelhas , Nova Zelândia , Vírus de RNA/genéticaRESUMO
Wasps of the genus Vespula are social insects that have become major pests and predators in their introduced range. Viruses present in these wasps have been studied in the context of spillover from honey bees, yet we lack an understanding of the endogenous virome of wasps as potential reservoirs of novel emerging infectious diseases. We describe the characterization of 68 novel and nine previously identified virus sequences found in transcriptomes of Vespula vulgaris in colonies sampled from their native range (Belgium) and an invasive range (New Zealand). Many viruses present in the samples were from the Picorna-like virus family (38%). We identified one Luteo-like virus, Vespula vulgaris Luteo-like virus 1, present in the three life stages examined in all colonies from both locations, suggesting this virus is a highly prevalent and persistent infection in wasp colonies. Additionally, we identified a novel Iflavirus with similarity to a recently identified Moku virus, a known wasp and honey bee pathogen. Experimental infection of honey bees with this novel Vespula vulgaris Moku-like virus resulted in an active infection. The high viral diversity present in these invasive wasps is a likely indication that their polyphagous diet is a rich source of viral infections.
Assuntos
Abelhas/virologia , Vírus de Insetos/isolamento & purificação , Vírus de Insetos/fisiologia , Vírus de RNA/isolamento & purificação , Vírus de RNA/fisiologia , Viroma , Vespas/virologia , Animais , Vírus de Insetos/classificação , Vírus de Insetos/genética , Vírus de RNA/classificação , Vírus de RNA/genética , Carga Viral , Replicação ViralRESUMO
A variety of 6,7-substituted-5,8-quinolinequinones were synthesised and assessed for their anti-tumour and anti-inflammatory activities, and their ability to inhibit the growth of Mycobacterium bovis BCG. In particular, the introduction of a sulfur group at the 7-position of the quinolinequinone led to the discovery of two compounds, 6-methylamino-7-methylsulfanyl-5,8-quinolinequinone (10a) and 6-amino-7-methylsulfonyl-5,8-quinolinequinone (12), that exhibited selectivity for leukemic cells over T-cells, a highly desirable property for an anti-cancer drug. A number of anti-inflammatory (AI) compounds were also identified, with 6,7-bis-methylsulfanyl-5,8-quinolinequinone (18a) exhibiting the highest AI activity (0.11 microM), while 6,7-dichloro-5,8-quinolinequinone (7a), 6,7-dichloro-2-methyl-5,8-quinolinequinone (7b), and 6,7-bis-phenylsulfanyl-quinoline-5,8-diol (19) also exhibited good AI activity and specificity. Several quinolinequinone TB-drug candidates were identified. Of these, 6-amino-7-chloro-5,8-quinolinequinone (11) and 6-amino-7-methanesulfinyl-5,8-quinolinequinone (14), exhibited low MICs (1.56-3.13 microg/mL) for the 100% growth inhibition of M. Bovis BCG. Some general trends pertaining to the functional group substitution of the quinolinequinone core and biological activity were also identified.
Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Antituberculosos/farmacologia , Mycobacterium bovis/efeitos dos fármacos , Quinonas/farmacologia , Aminas/química , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antituberculosos/síntese química , Antituberculosos/química , Proliferação de Células/efeitos dos fármacos , Cloro/química , Células HL-60 , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Estrutura Molecular , Quinolonas/síntese química , Quinolonas/química , Quinolonas/farmacologia , Quinonas/síntese química , Quinonas/química , Estereoisomerismo , Enxofre/químicaRESUMO
CRISPR gene drives have potential for widespread and cost-efficient pest control, but are highly controversial. We examined a potential gene drive targeting spermatogenesis to control the invasive common wasp (Vespula vulgaris) in New Zealand. Vespula wasps are haplodiploid. Their life cycle makes gene drive production challenging, as nests are initiated by single fertilized queens in spring followed by several cohorts of sterile female workers and the production of reproductives in autumn. We show that different spermatogenesis genes have different levels of variation between introduced and native ranges, enabling a potential 'precision drive' that could target the reduced genetic diversity and genotypes within the invaded range. In vitro testing showed guide-RNA target specificity and efficacy that was dependent on the gene target within Vespula, but no cross-reactivity in other Hymenoptera. Mathematical modelling incorporating the genetic and life history traits of Vespula wasps identified characteristics for a male sterility drive to achieve population control. There was a trade-off between drive infiltration and impact: a drive causing complete male sterility would not spread, while partial sterility could be effective in limiting population size if the homing rate is high. Our results indicate that gene drives may offer viable suppression for wasps and other haplodiploid pests.
Assuntos
Sistemas CRISPR-Cas/genética , Tecnologia de Impulso Genético , Espécies Introduzidas , Controle Biológico de Vetores/métodos , Vespas/genética , Animais , Internacionalidade , Dinâmica PopulacionalRESUMO
The oxidation and reduction of cysteine residues is emerging as an important post-translational control of protein function. We describe a method for fluorescent labelling of either reduced or oxidized thiols in combination with two-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis (2DE) to detect changes in the redox proteome of cultured cells. Reduced thiols are labelled with the fluorescent compound 5-iodoacetamidofluorescein. To monitor oxidized thiols, the reduced thiols are first blocked with N-ethyl-maleimide, then the oxidized thiols reduced with dithiothreitol and labelled with 5-iodoacetamidofluorescein. The method is illustrated by treating Jurkat T-lymphoma cells with hydrogen peroxide and monitoring increased labelling of oxidized thiol proteins. A decrease in labelling can also be detected, and this is attributed to the formation of higher oxidation states of cysteine that are not reduced by dithiothreitol.
Assuntos
Células Cultivadas/química , Proteínas/química , Proteoma/análise , Compostos de Sulfidrila/química , Eletroforese em Gel Bidimensional/métodos , Humanos , Estrutura Molecular , OxirreduçãoRESUMO
Invasive species populations periodically collapse from high to low abundance, sometimes even to extinction. Pathogens and the burden they place on invader immune systems have been hypothesised as a mechanism for these collapses. We examined the association of the bacterial pathogen (Pseudomonas spp.) and the viral community with immune gene expression in the globally invasive Argentine ant (Linepithema humile (Mayr)). RNA-seq analysis found evidence for 17 different viruses in Argentine ants from New Zealand, including three bacteriophages with one (Pseudomonas phage PS-1) likely to be attacking the bacterial host. Pathogen loads and prevalence varied immensely. Transcriptomic data showed that immune gene expression was consistent with respect to the viral classification of negative-sense, positive-sense and double-stranded RNA viruses. Genes that were the most strongly associated with the positive-sense RNA viruses such as the Linepithema humile virus 1 (LHUV-1) and the Deformed wing virus (DWV) were peptide recognition proteins assigned to the Toll and Imd pathways. We then used principal components analysis and regression modelling to determine how RT-qPCR derived immune gene expression levels were associated with viral and bacterial loads. Argentine ants mounted a substantial immune response to both Pseudomonas and LHUV-1 infections, involving almost all immune pathways. Other viruses including DWV and the Kashmir bee virus appeared to have much less immunological influence. Different pathogens were associated with varying immunological responses, which we hypothesize to interact with and influence the invasion dynamics of this species.
Assuntos
Formigas/imunologia , Imunidade Inata , Vírus de Insetos/patogenicidade , Fagos de Pseudomonas/patogenicidade , Pseudomonas/patogenicidade , Animais , Formigas/genética , Formigas/microbiologia , Formigas/virologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Espécies Introduzidas , Pseudomonas/virologia , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , TranscriptomaRESUMO
Social wasps are a major pest in many countries around the world. Pathogens may influence wasp populations and could provide an option for population management via biological control. We investigated the pathology of nests of apparently healthy common wasps, Vespula vulgaris, with nests apparently suffering disease. First, next-generation sequencing and metatranscriptomic analysis were used to examine pathogen presence. The transcriptome of healthy and diseased V. vulgaris showed 27 known microbial phylotypes. Four of these were observed in diseased larvae alone (Aspergillus fumigatus, Moellerella wisconsensis, Moku virus, and the microsporidian Vavraia culicis). Kashmir Bee Virus (KBV) was found to be present in both healthy and diseased larvae. Moellerella wisconsensis is a human pathogen that was potentially misidentified in our wasps by the MEGAN analysis: it is more likely to be the related bacteria Hafnia alvei that is known to infect social insects. The closest identification to the putative pathogen identified as Vavraia culicis was likely to be another microsporidian Nosema vulgaris. PCR and subsequent Sanger sequencing using published or our own designed primers, confirmed the identity of Moellerella sp. (which may be Hafnia alvei), Aspergillus sp., KBV, Moku virus and Nosema. Secondly, we used an infection study by homogenising diseased wasp larvae and feeding them to entire nests of larvae in the laboratory. Three nests transinfected with diseased larvae all died within 19 days. No pathogen that we monitored, however, had a significantly higher prevalence in diseased than in healthy larvae. RT-qPCR analysis indicated that pathogen infections were significantly correlated, such as between KBV and Aspergillus sp. Social wasps clearly suffer from an array of pathogens, which may lead to the collapse of nests and larval death.
Assuntos
Interações Hospedeiro-Patógeno , Metagenoma , Metagenômica , Microbiota , Vespas/microbiologia , Animais , Perfilação da Expressão Gênica/métodos , Larva/microbiologia , Filogenia , Vespas/ultraestruturaRESUMO
Social insects host a diversity of viruses. We examined New Zealand populations of the globally widely distributed invasive Argentine ant (Linepithema humile) for RNA viruses. We used metatranscriptomic analysis, which identified six potential novel viruses in the Dicistroviridae family. Of these, three contigs were confirmed by Sanger sequencing as Linepithema humile virus-1 (LHUV-1), a novel strain of Kashmir bee virus (KBV) and Black queen cell virus (BQCV), while the others were chimeric or misassembled sequences. We extended the known sequence of LHUV-1 to confirm its placement in the Dicistroviridae and categorised its relationship to closest relatives, which were all viruses infecting Hymenoptera. We examined further for known viruses by mapping our metatranscriptomic sequences to all viral genomes, and confirmed KBV, BQCV, LHUV-1 and Deformed wing virus (DWV) presence using qRT-PCR. Viral replication was confirmed for DWV, KBV and LHUV-1. Viral titers in ants were higher in the presence of honey bee hives. Argentine ants appear to host a range of' honey bee' pathogens in addition to a virus currently described only from this invasive ant. The role of these viruses in the population dynamics of the ant remain to be determined, but offer potential targets for biocontrol approaches.
Assuntos
Formigas/virologia , Vírus de RNA/fisiologia , Animais , Genoma Viral , Nova Zelândia , Fases de Leitura Aberta/genética , Filogenia , Vírus de RNA/genética , Transcriptoma/genéticaRESUMO
Thiol proteins are important in cellular antioxidant defenses and redox signalling. It is postulated that reactive oxidants cause selective thiol oxidation, but relative sensitivities of different cell proteins and critical targets are not well characterized. We exposed Jurkat cells to H2O2 for 10 min and measured changes in reversibly oxidized proteins by labelling with iodoacetamidofluorescein and two-dimensional electrophoresis. At 200 microM H2O2, which caused activation of the MAP (mitogen-activated protein) kinase ERK (extracellular-signal-regulated kinase), growth arrest and apoptosis, relatively few changes were seen. A total of 28 spots were reversibly oxidized (increased labelling intensity) and 24 decreased. The latter included isoforms of peroxiredoxins 1 and 2, which were irreversibly oxidized. Oxidation of GAPDH (glyceraldehyde-3-phosphate dehydrogenase) was striking, and other affected proteins included glutathione S-transferase P1-1, enolase, a regulatory subunit of protein kinase A, annexin VI, the mitotic checkpoint serine/threonine-protein kinase BUB1beta, HSP90beta (heat-shock protein 90beta) and proteosome components. At 20 microM H2O2, changes were fewer, but GAPDH and peroxiredoxin 2 were still modified. Dinitrochlorobenzene treatment, which inhibited cellular thioredoxin reductase and partially depleted GSH, caused reversible oxidation of several proteins, including thioredoxin 1 and peroxiredoxins 1 and 2. Most changes were distinct from those with H2O2, and changes with H2O2 were scarcely enhanced by dinitrochlorobenzene. Relatively few proteins, including deoxycytidine kinase, nucleoside diphosphate kinase and a proteosome activator subunit, responded only to the combined treatment. Thus most of the effects of H2O2 were not linked to thioredoxin oxidation. Our study has identified peroxiredoxin 2 and GAPDH as two of the most oxidant-sensitive cell proteins and has highlighted how readily peroxiredoxins undergo irreversible oxidation.
Assuntos
Peróxido de Hidrogênio/farmacologia , Proteínas/metabolismo , Compostos de Sulfidrila/metabolismo , Dinitroclorobenzeno , Relação Dose-Resposta a Droga , Ativação Enzimática , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Humanos , Células Jurkat , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oxirredução , Peroxidases/metabolismo , Peroxirredoxina VI , Peroxirredoxinas , Proteínas/química , Transdução de Sinais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
We report that tumor cells without mitochondrial DNA (mtDNA) show delayed tumor growth, and that tumor formation is associated with acquisition of mtDNA from host cells. This leads to partial recovery of mitochondrial function in cells derived from primary tumors grown from cells without mtDNA and a shorter lag in tumor growth. Cell lines from circulating tumor cells showed further recovery of mitochondrial respiration and an intermediate lag to tumor growth, while cells from lung metastases exhibited full restoration of respiratory function and no lag in tumor growth. Stepwise assembly of mitochondrial respiratory (super)complexes was correlated with acquisition of respiratory function. Our findings indicate horizontal transfer of mtDNA from host cells in the tumor microenvironment to tumor cells with compromised respiratory function to re-establish respiration and tumor-initiating efficacy. These results suggest pathophysiological processes for overcoming mtDNA damage and support the notion of high plasticity of malignant cells.
Assuntos
Mitocôndrias/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Citrato (si)-Sintase/metabolismo , DNA Mitocondrial/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transplante HomólogoRESUMO
Oxidants can activate signaling pathways and modulate a variety of cellular activities. Their action at a molecular level involves the post-translational modification of protein thiols. We have developed a proteomic method to monitor the reduction and oxidation of protein thiols, and identify those thiol proteins most sensitive to oxidation. Cells were disrupted in the presence of N-ethylmaleimide to block the reduced thiol proteins and dithiothreitol was added to reduce the oxidized thiol proteins before labeling with 5-iodoacetamidofluorescein. Two-dimensional (2-D) electrophoresis was used to resolve the labeled samples. We applied the method to Jurkat T lymphocytes and examined the effect of diamide on the oxidized and reduced thiol protein profiles. A small percentage of protein thiols were already oxidized in untreated cells. Exposure of cells to 2 mM diamide for ten minutes led to a dramatic increase in thiol protein oxidation as seen in the oxidized thiol protein map. However, it was difficult to detect any change in the pattern of reduced thiol proteins. Separation of proteins by 2-D electrophoresis revealed approximately 200 thiol proteins that were oxidized by diamide treatment. This method will be valuable in elucidating redox signaling pathways.