Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(38): 26071-26080, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39284289

RESUMO

Two novel ternary air-stable transition-metal carbodiimides, MnHf(NCN)3 and FeHf(NCN)3, were synthesized via solid-state metathesis using either ZnNCN or Na2NCN as the carbodiimide source and the corresponding binary metal chlorides. These two phases are the first examples of transition-metal carbodiimides with an AB(NCN)3 composition, akin to ubiquitous ABO3 perovskite oxides. The crystal structure of MnHf(NCN)3 was determined and refined from powder X-ray diffraction (XRD) data in the non-centrosymmetric space group P6322 allowing for chirality, the assignment of which is supported by second-harmonic generation (SHG) measurements. FeHf(NCN)3 was found to crystallize isotypically, and the presence of iron(II) in a high spin state was confirmed by 57Fe Mößbauer spectroscopy. The structures are revealed to be NiAs-derived and can be described as a hexagonal stack of NCN2- anions with metal cations occupying 2/3 of the octahedral voids. Both IR spectroscopic measurements and DFT calculations agree that the NCN2- unit is a bent carbodiimide with C2v symmetry, necessary to account for the size difference present in such a vacancy-ordered structure. Magnetic studies reveal predominantly strong antiferromagnetic interactions but no long-range order between the paramagnetic Mn2+ centers, likely due to the dilution of Mn2+ over the octahedral sites or perhaps even due to some degree of magnetic frustration. The optical and electrochemical properties of MnHf(NCN)3 were then studied, revealing a wide band gap of 3.04 eV and p-type behavior.

2.
Inorg Chem ; 63(11): 5227-5234, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38451057

RESUMO

We report on the synthesis of two-layered alkali germanates, Na2Ge4O7 and K2Ge4O7. Both compounds were synthesized by using the ammonothermal method at 823 K and 100 MPa. Under these conditions, germanium is partially reduced from the +IV state to +II, forming mixed-valence compounds with the rarely observed [Ge(II)O3]4- unit. The valence state was verified by X-ray photoelectron spectroscopy (XPS) and was accompanied by theoretical calculations alongside vibrational spectroscopy and single-crystal X-ray structure determination. The compounds crystallize in the trigonal space groups (Na2Ge4O7: P3̅c1 and K2Ge4O7: P3̅m1) and feature layers of corner sharing [Ge(II)O3]4- and [Ge(IV)2O7]6- units forming [Ge(II)2Ge(IV)2O7]2- polyanions. These layers are separated by alkali metal ions. The compounds are colorless insulators with band gaps of 4.0-4.2 eV. According to the Robin-Day classification, both compounds can be described as class I materials, where the valences are trapped on specific sites.

3.
Inorg Chem ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39383049

RESUMO

The anhydrous beryllium carbonate Be[CO3] with calcite-type crystal structure was obtained by a reaction of BeO with CO2 in a laser-heated diamond anvil cell at pressures between 30 GPa and 80 GPa and elevated temperatures. Its calcite-type crystal structure (R3̅c with Z = 6) is characterized by 6-fold-coordinated beryllium atoms forming [BeO6] octahedra and by trigonal-planar [CO3]2- groups. The crystal structure was determined by synchrotron-based single-crystal X-ray diffraction and confirmed by density-functional-theory-based calculations in combination with experimental Raman spectroscopy. Calcite-type Be[CO3] was synthesized at significantly lower pressures than the other very few compounds hosting 6-fold-coordinated beryllium, and it is the first beryllium carbonate with this coordination.

4.
Inorg Chem ; 63(34): 15762-15771, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39133057

RESUMO

The study of the structural stability of carbonates under different pressure and temperature conditions is important for modeling the carbon budget in the Earth's interior and the stability of carbonation products of carbon capture and storage (CCS) solutions. In this work, we confirm the existence of the two dense polymorphs of the hydrated magnesium carbonate MgCO3·3H2O nesquehonite mineral previously reported, and we characterize their structures using synchrotron single-crystal X-ray diffraction at 3.1 and 11.6 GPa. Phase transitions entail the distortion and atomic rearrangement of the Mg-centered polyhedra and the tilting of the [CO3] carbonate units. In particular, the Mg coordination number increases from 6 in nesquehonite to 7 in the second high-pressure phase, while maintaining a topology based on complex MgCO3(H2O)2 chains. We also studied their vibrational behavior upon compression using Raman spectroscopy and complemented the experimental results with density-functional theory (DFT) calculations. The role played by hydrogen bonds in the compressibility and the polymorphism of this hydrated carbonate is also discussed.

5.
Angew Chem Int Ed Engl ; 63(32): e202405849, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38779989

RESUMO

Nitridophosphates, with their primary structural motif of isolated or condensed PN4 tetrahedra, meet many requirements for high performance materials. Their properties are associated with their structural diversity, which is mainly limited by this specific building block. Herein, we present the alkaline earth metal nitridophosphate oxide Ba3[PN3]O featuring a trigonal planar [PN3]4- anion. Ba3[PN3]O was obtained using a hot isostatic press by medium-pressure high-temperature synthesis (MP/HT) at 200 MPa and 880 °C. The crystal structure was solved and refined from single-crystal X-ray diffraction data in space group R 3 ‾ ${\bar 3}$ c (no. 167) and confirmed by SEM-EDX, magic angle spinning (MAS) NMR, vibrational spectroscopy (Raman, IR) and low-cost crystallographic calculations (LCC). MP/HT synthesis reveals great potential by extending the structural chemistry of P to include trigonal planar [PN3]4- motifs.

6.
Angew Chem Int Ed Engl ; 63(40): e202409593, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38963036

RESUMO

The research for wurtzite-type ternary nitride semiconductors containing earth abundant elements with a stoichiometry of 1 : 1 : 2 was focused on metals like Mg or Zn, so far. The vast majority of these Grimm-Sommerfeld analogue compounds crystallize in the ß-NaFeO2 structure, although a second arrangement in space group Pmc21 is predicted to be a viable alternative. Despite extensive theoretical and experimental studies, this structure has so far remained undiscovered. Herein, we report on BeGeN2 in a Pmc21 structure, synthesized from Be3N2 and Ge3N4 using a high-pressure high-temperature approach at 6 GPa and 800 °C. The compound was characterized by powder X-ray diffraction (PXRD), solid state nuclear magnetic resonance (NMR), Raman and energy dispersive X-ray (EDX) spectroscopy, temperature-dependent PXRD, second harmonic generation (SHG) and UV/Vis measurements and in addition also compared to its lighter homologue BeSiN2 in all mentioned analytic techniques. The synthesis and investigation of both the first beryllium germanium nitride and the first ternary wurtzite-type nitride crystallizing in space group Pmc21 open the door to a new field of research on wurtzite-type related structures.

7.
Inorg Chem ; 62(34): 13910-13918, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37579301

RESUMO

We synthesized the inorganic anhydrous aluminum carbonates Al2[C2O5][CO3]2 and Al2[CO3]3 by reacting Al2O3 with CO2 at high pressures and temperatures and characterized them by Raman spectroscopy. Their structures were solved by X-ray diffraction. Al2[CO3]3 forms at around 24-28 GPa, while Al2[C2O5][CO3]2 forms above 38(3) GPa. The distinguishing feature of the new Al2[C2O5][CO3]2-structure type is the presence of pyrocarbonate [C2O5]2--groups, trigonal [CO3]2─groups, and octahedrally coordinated trivalent cations. Al2[CO3]3 has isolated [CO3]2--groups. Both Al-carbonates can be recovered under ambient conditions. Density functional theory calculations predict that CO2 will react with Fe2O3, Ti2O3, Ga2O3, In2O3, and MgSiO3 at high pressures to form compounds which are isostructural to Al2[C2O5][CO3]2. MgSi[C2O5][CO3]2 is predicted to be stable at pressures relative to abundant mantle minerals in the presence of CO2. This structure type allows the incorporation of four elements (Mg, Si, Fe, and Al) abundant in the Earth's mantle in octahedral coordination and provides an alternative phase with novel carbon speciation for carbon storage in the deep Earth.

8.
J Am Chem Soc ; 144(7): 2899-2904, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35134291

RESUMO

The synthesis of a novel type of carbonate, namely of the inorganic pyrocarbonate salt Sr[C2O5], which contains isolated [C2O5]2--groups, significantly extends the crystal chemistry of inorganic carbonates beyond the established sp2- and sp3-carbonates. We synthesized Sr[C2O5] in a laser-heated diamond anvil cell by reacting Sr[CO3] with CO2. By single crystal synchrotron diffraction, Raman spectroscopy, and density functional theory (DFT) calculations, we show that it is a pyrocarbonate salt. Sr[C2O5] is the first member of a novel family of inorganic carbonates. We predict, based on DFT calculations, that further inorganic pyrocarbonates can be obtained and that these will be relevant to geoscience and may provide a better understanding of reactions converting CO2 into useful inorganic compounds.

9.
Inorg Chem ; 61(26): 9855-9859, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35730801

RESUMO

We have synthesized Pb[C2O5], an inorganic pyrocarbonate salt, in a laser-heated diamond anvil cell (LH-DAC) at 30 GPa by heating a Pb[CO3] + CO2 mixture to ≈2000(200) K. Inorganic pyrocarbonates contain isolated [C2O5]2- groups without functional groups attached. The [C2O5]2- groups consist of two oxygen-sharing [CO3]3- groups. Pb[C2O5] was characterized by synchrotron-based single-crystal structure refinement, Raman spectroscopy, and density functional theory calculations. Pb[C2O5] is isostructural to Sr[C2O5] and crystallizes in the monoclinic space group P21/c with Z = 4. The synthesis of Pb[C2O5] demonstrates that, just like in other carbonates, cation substitution is possible and that therefore inorganic pyrocarbonates are a novel family of carbonates, in addition to the established sp2 and sp3 carbonates.

10.
J Am Chem Soc ; 143(2): 798-804, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33405904

RESUMO

The crown-ether coordination compounds ZnX2(18-crown-6), EuX2(18-crown-6) (X: Cl, Br, I), MnI2(18-crown-6), Mn3Cl6(18-crown-6)2, Mn3I6(18-crown-6)2, and Mn2I4(18-crown-6) are obtained by ionic-liquid-based synthesis. Whereas MX2(18-crown-6) (M: Zn, Eu) show conventional structural motives, Mn3Cl6(18-crown-6)2, Mn3I6(18-crown-6)2, and Mn2I4(18-crown-6) exhibit unusual single MnX4 tetrahedra coordinated to the crown-ether complex. Surprisingly, some compounds show outstanding photoluminescence. Thus, rare Zn2+-based luminescence is observed and unexpectedly efficient for ZnI2(18-crown-6) with a quantum yield of 54%. Unprecedented quantum yields are also observed for Mn3I6(18-crown-6)2, EuBr2(18-crown-6), and EuI2(18-crown-6) with values of 98, 72, and 82%, respectively, which can be rationalized based on the specific structural features. Most remarkable, however, is Mn2I4(18-crown-6). Its specific structural features with finite sensitizer-activator couples result in an extremely strong emission with an outstanding quantum yield of 100%. Consistent with its structural features, moreover, anisotropic angle-dependent emission under polarized light and nonlinear optical (NLO) effects occur, including second-harmonic generation (SHG). The title compounds and their optical properties are characterized by single-crystal structure analysis, X-ray powder diffraction, chemical analysis, density functional theory (DFT) calculations, and advanced spectroscopic methods.

11.
Inorg Chem ; 60(8): 5419-5422, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33813824

RESUMO

We have synthesized the orthocarbonate Sr2CO4, in which carbon is tetrahedrally coordinated by four oxygen atoms, at moderately high pressures [20(1) GPa] and high temperatures (≈3500 K) in a diamond anvil cell by reacting a SrCO3 single crystal with SrO powder. We show by synchrotron powder X-ray diffraction, Raman spectroscopy, and density functional thoery calculations that this phase, and hence sp3-hybridized carbon in a CO44- group, can be recovered at ambient conditions. The C-O bond distances are all of similar lengths [≈1.41(1) Å], and the O-C-O angles deviate from the ideal tetrahedral angle by a few degrees only.

12.
Inorg Chem ; 60(20): 15653-15658, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34614358

RESUMO

GaSeCl5O is a new inorganic molecular compound prepared from SeO2, SeCl4, and GaCl3 at 50 °C in quantitative yield. The structure of the title compound is described by GaCl3(OSeCl2) molecules with a tetrahedrally coordinated Ga atom and a pseudo-tetrahedrally coordinated Se atom (including lone pair of Se(IV)) that are bridged by oxygen. GaSeCl5O crystallizes in the polar chiral space group P61, which is rarely observed for molecular structures. The compound is characterized by X-ray structure analysis based on single crystals and powder samples, thermogravimetry, infrared and Raman spectroscopy as well as by second harmonic generation (SHG) measurements. The experimental data are complemented by density functional theory calculations. GaSeCl5O shows one of the strongest SHG signals known in the visible part of the electromagnetic spectrum (480-700 nm) with an SHG intensity 10 times higher than potassium dihydrogen phosphate (KDP). This is in accordance with the phase matchability and a strong dipole moment (|µ| = 8.3 D for a molecule in the crystal lattice). Such a strong SHG effect is also remarkable since GaSeCl5O-unlike most of the materials with strong SHG intensity-is an inorganic molecular compound.

13.
Inorg Chem ; 60(19): 14504-14508, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34520201

RESUMO

We have synthesized the orthocarbonate Sr3[CO4]O in a laser-heated diamond anvil cell at 20 and 30 GPa by heating to ≈3000 (300) K. Afterward, we recovered the orthocarbonate with [CO4]4- groups at ambient conditions. Single-crystal diffraction shows the presence of [CO4]4- groups, i.e., sp3-hybridized carbon tetrahedrally coordinated by covalently bound oxygen atoms. The [CO4]4- tetrahedra are located in a cage formed by corner-sharing OSr6 octahedra, i.e., octahedra with oxygen as a central ion, forming an antiperovskite-type structure. At high pressures, the octahedra are nearly ideal and slightly rotated. The high-pressure phase is tetragonal (I4/mcm). Upon pressure release, there is a phase transition with a symmetry lowering to an orthorhombic phase (Pnma), where the octahedra tilt and deform slightly.

14.
Angew Chem Int Ed Engl ; 60(40): 21801-21806, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34382328

RESUMO

CrB4 O6 N crystallizes in the non-centrosymmetric space group P63 mc (no. 186) with the lattice parameters a=5.1036(1), c=8.3519(3) Å, and a volume of 188.40(1) Å3 . It was synthesized in a high-pressure/high-temperature experiment at 7 GPa and 1673 K and represents the first high-pressure oxonitridoborate. It is built up of starlike-shaped entities of four BO3 N tetrahedra, connected via one common nitrogen atom that resembles the fourfold-coordinated nitrogen atoms in the homeotypic nitridosilicates MYbSi4 N7 (M=Sr, Ba). Building up a network with channels that contain the Cr3+ ions, CrB4 O6 N contains for the first time a tetrahedral building unit in contrast to trigonal planar B(O/N)3 entities in all other known oxonitridoborates. The structural relations as well as the results of spectroscopic measurements and calculations on the chromium oxonitridoborate are discussed.

15.
Angew Chem Int Ed Engl ; 60(3): 1503-1506, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33026134

RESUMO

The first bismuth borosulfate (H3 O)Bi[B(SO4 )2 ]4 is only the second featuring a three-dimensional anion, the first tectosilicate-analogous borosulfate synthesised solvothermally without a precursor (from Bi(NO3 )3 ⋅5 H2 O and B(OH)3 in oleum); moreover, it is the first comprising two differently charged cations and crystallises in a new structure type in space group I 4 ‾ (no. 82) (a=11.857(1), c=8.149(1) Å, 1947 refl., 111 param., wR2=0.037), confirmed by a second harmonic generation (SHG) measurement. The B(SO4 )4 supertetrahedra are connected via all four sulfate tetrahedra resulting in a three-dimensional anion with both H3 O+ and Bi3+ cations in channels. Additionally, the crystal structure of a further bismuth borosulfate, Bi2 [B2 (SO4 )6 ], is elucidated crystallising isotypically to the rare-earth borosulfates R2 [B2 (SO4 )6 ] in space group C2/c (No. 15) (a=13.568(2), b=11.490(2), c=11.106(2) Å, 3127 refl., 155 param., wR2=0.035). Moreover, the optical and thermal properties of both compounds are discussed.

16.
Chemistry ; 26(30): 6851-6861, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-31944426

RESUMO

La3 B6 O13 (OH) was obtained by a high-pressure/high-temperature experiment at 6 GPa and 1673 K. The compound crystallizes in the space group P21 (no. 4) with the lattice parameters a=4.785(2), b=12.880(4), c=7.433(3) Å, and ß=90.36(10)°, and is built up of corner- as well as edge-sharing BO4 tetrahedra. It represents the first acentric high-pressure borate containing these B2 O6 entities. The compound develops borate layers of "sechser"-rings with the La3+ cations positioned between the layers. Single-crystal and powder X-ray diffraction, vibrational and MAS NMR spectroscopy, second-harmonic generation (SHG) and thermoanalytical measurements, as well as computational methods were used to affirm the proposed structure and the B2 O6 entities.

17.
Chemistry ; 24(60): 16036-16043, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30079577

RESUMO

The new non-centrosymmetric tin fluoride borate Sn3 [B3 O7 ]F was synthesized hydrothermally, and was characterized by single-crystal and powder X-ray diffraction, vibrational spectroscopy, DFT calculations, second harmonic generation (SHG) measurements, thermogravimetry, and differential scanning calorimetry. Its SHG response is about 12 times that of quartz. The compound crystallizes in the non-centrosymmetric orthorhombic space group Pna21 with lattice parameters a=922.4(2), b=769.8(4), and c=1221.9(6) pm (Z=4). Characteristic for the structure are isolated B3 O7 moieties, consisting of two corner-sharing BO3 units and one BO4 tetrahedron. These occupy half of the octahedral voids of a slightly distorted hexagonal closest packing of Sn2+ atoms, with [SnF]+ units in the other half of the octahedral voids. Sn3 [B3 O7 ]F is transparent over a wide spectral range with a UV cut-off edge at about 263 nm.

18.
Inorg Chem ; 57(9): 5554-5559, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29629758

RESUMO

The new acentric indium borate InB6O9(OH)3 was synthesized in a Walker-type multianvil apparatus at extreme pressure and temperature conditions of 12.3 GPa and 1500 °C. Single-crystal X-ray diffraction provided the data for the crystal structure solution and refinement. InB6O9(OH)3 crystallizes in the orthorhombic space group Fdd2 ( Z = 8) with the lattice parameters a = 39.011(8), b = 4.4820(9), c = 7.740(2) Å, and V = 1353.3(5) Å3. The structure of InB6O9(OH)3 is basically built of corner-sharing BO4 tetrahedra and isolated InO6 octahedra. The presence of hydroxyl groups was confirmed with vibrational spectroscopic methods (IR and Raman). Furthermore, the second harmonic signal of an InB6O9(OH)3 powder sample yielded more than twice the intensity of quartz.

19.
Inorg Chem ; 57(16): 10341-10351, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30085685

RESUMO

A new iridium boride, ß-Ir4B5, was synthesized under high-pressure/high-temperature conditions of 10.5 GPa and 1500 °C in a multianvil press with a Walker-type module. The new modification ß-Ir4B5 crystallizes in a new structure type in the orthorhombic space group Pnma (no. 62) with the lattice parameters a = 10.772(2) Å, b = 2.844(1) Å, and c = 6.052(2) Å with R1 = 0.0286, wR2 = 0.0642 (all data), and Z = 2. The structure was determined by single-crystal X-ray and neutron powder diffraction on samples enriched in 11B. The compound is built up by an alternating stacking of boron and iridium layers with the sequence ABA'B'. Additionally, microcalorimetry, hardness, and compressibility measurements of the binary iridium borides α-Ir4B5, ß-Ir4B5, Ir5B4, hexagonal Ir4B3- x and orthorhombic Ir4B3- x were carried out and theoretical investigations based on density function theory (DFT) were employed to complement a comprehensive evaluation of structure-property relations. The incorporation of boron into the structures does not enhance the compressibility but leads to a significant reduction of the bulk moduli and elastic constants in comparison to elemental iridium.

20.
Chemistry ; 23(6): 1331-1337, 2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-27981647

RESUMO

Pale-yellow single crystals of the new borate tellurate(VI) Bi3 TeBO9 were obtained by reaction of stoichiometric amounts of Bi2 O3 , B2 O3 , and Te(OH)6 at 780 °C. The non-centrosymmetric crystal structure (P63 , Z=2, a=8.7454(16), c=5.8911(11) Å, 738 refl., 43 param, R1=0.037, wR2=0.093) contains isolated trigonal-planar BO3 units and nearly undistorted TeO6 octahedra. The Bi3+ cations are located in between in octahedral voids. The BiO6 octahedra are significantly distorted to a [3+3] pattern (2.25/2.50 Å) due to the ns2 configuration. According to the structural features, the formula can be written as Bi3 (TeO6 )(BO3 ). Alternatively, the structure can also be described as hcp of oxygen with TeVI and BiIII in octahedral voids and BIII in trigonal- planar voids. The vibrational spectra show the typical features of BO3 and TeO6 units with a significant 10 B/11 B isotopic splitting of the IR-active B-O valence mode (1248 and 1282 cm-1 ). The UV/Vis spectrum shows an optical band edge with an onset around 480 nm (2.6 eV). MAS-NMR spectra of 11 B show an anisotropic signal with a quadrupole coupling constant of CQ =2.55 MHz. and a very small deviation from rotational symmetry (η=0.2). The isotropic chemical shift is 20.1 ppm. The second harmonic generation (SHG) test was positive with an activity comparable to potassium dihydrogen phosphate (KDP). Bi3 TeBO9 decomposes in air at 825 °C to Bi2 TeO5 .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA