Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gene Ther ; 30(5): 421-428, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36316446

RESUMO

Lipid nanoparticles (LNPs) are currently the most advanced non-viral clinically approved messenger ribonucleic acid (mRNA) delivery systems. The ability of a mRNA vaccine to have a therapeutic effect is related to the capacity of LNPs to deliver the nucleic acid intact into cells. The role of LNPs is to protect mRNA, especially from degradation by ribonucleases (RNases) and to allow it to access the cytoplasm of cells where it can be translated into the protein of interest. LNPs enter cells by endocytosis and their size is a critical parameter impacting their cellular internalization. In this work, we studied different formulation process parameters impacting LNPs size. Taylor dispersion analysis (TDA) was used to determine the LNPs size and size distribution and the results were compared with those obtained by Dynamic Light Scattering (DLS). TDA was also used to study both the degradation of mRNA in the presence of RNases and the percentage of mRNA encapsulation within LNPs.


Assuntos
Lipossomos , Nanopartículas , Ribonucleases , RNA Mensageiro , Lipídeos , Vacinas de mRNA , RNA Interferente Pequeno/genética
2.
Anal Chem ; 94(11): 4677-4685, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35254048

RESUMO

Messenger RNA vaccines have come into the spotlight as a promising and adaptive alternative to conventional vaccine approaches. The efficacy of mRNA vaccines relies on the ability of mRNA to reach the cytoplasm of cells, where it can be translated into proteins of interest, allowing it to trigger the immune response. However, unprotected mRNA is unstable and susceptible to degradation by exo- and endonucleases, and its negative charges are electrostatically repulsed by the anionic cell membranes. Therefore, mRNA needs a delivery system that protects the nucleic acid from degradation and allows it to enter into the cells. Lipid nanoparticles (LNPs) represent a nonviral leading vector for mRNA delivery. Physicochemical parameters of LNPs, including their size and their charge, directly impact their in vivo behavior and, therefore, their cellular internalization. In this work, Taylor dispersion analysis (TDA) was used as a new methodology for the characterization of the size and polydispersity of LNPs, and capillary electrophoresis (CE) was used for the determination of LNP global charge. The results obtained were compared with those obtained by dynamic light scattering (DLS) and laser Doppler electrophoresis (LDE).


Assuntos
Nanopartículas , Vacinas de mRNA , Lipossomos , Nanopartículas/química , RNA Mensageiro/química , RNA Mensageiro/genética , Vacinas Sintéticas
3.
Mol Ther Nucleic Acids ; 32: 794-806, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37346973

RESUMO

The use of modified nucleosides is an important approach to mitigate the intrinsic immunostimulatory activity of exogenous mRNA and to increase its translation for mRNA therapeutic applications. However, for vaccine applications, the intrinsic immunostimulatory nature of unmodified mRNA could help induce productive immunity. Additionally, the ionizable lipid nanoparticles (LNPs) used to deliver mRNA vaccines can possess immunostimulatory properties that may influence the impact of nucleoside modification. Here we show that uridine replacement with N1-methylpseudouridine in an mRNA vaccine encoding influenza hemagglutinin had a significant impact on the induction of innate chemokines/cytokines and a positive impact on the induction of functional antibody titers in mice and macaques when MC3 or KC2 LNPs were used as delivery systems, while it impacted only minimally the titers obtained with L319 LNPs, indicating that the impact of nucleoside modification on mRNA vaccine efficacy varies with LNP composition. In line with previous observations, we noticed an inverse correlation between the induction of high innate IFN-α titers in the macaques and antigen-specific immune responses. Furthermore, and consistent with the species specificity of pathogen recognition receptors, we found that the effect of uridine replacement did not strictly translate from mice to non-human primates.

4.
Biomaterials ; 286: 121570, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35576809

RESUMO

The mRNA vaccine technology has promising applications to fight infectious diseases as demonstrated by the licensing of two mRNA-based vaccines, Comirnaty® (Pfizer/BioNtech) and Spikevax® (Moderna), in the context of the Covid-19 crisis. Safe and effective delivery systems are essential to the performance of these vaccines and lipid nanoparticles (LNPs) able to entrap, protect and deliver the mRNA in vivo are considered by many as the current "best in class". Nevertheless, current mRNA/LNP vaccine technology has still some limitations, one of them being thermostability, as evidenced by the ultracold distribution chain required for the licensed vaccines. We found that the thermostability of mRNA/LNP, could be improved by a novel imidazole modified lipid, DOG-IM4, in combination with standard helper lipids. DOG-IM4 comprises an ionizable head group consisting of imidazole, a dioleoyl lipid tail and a short flexible polyoxyethylene spacer between the head and tail. Here we describe the synthesis of DOG-IM4 and show that DOG-IM4 LNPs confer strong immunization properties to influenza HA mRNA in mice and macaques and a remarkable stability to the encapsulated mRNA when stored liquid in phosphate buffered saline at 4 °C. We speculate the increased stability to result from some specific attributes of the lipid's imidazole head group.


Assuntos
COVID-19 , Nanopartículas , Animais , COVID-19/prevenção & controle , Imidazóis , Imunização , Lipídeos , Lipossomos , Camundongos , Primatas/genética , RNA Mensageiro/genética , Vacinas Sintéticas , Vacinas de mRNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA