Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Cancer ; 118(1): 106-116, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29206819

RESUMO

BACKGROUND: Reduced RHOA signalling has been shown to increase the growth/metastatic potential of colorectal tumours. However, the mechanisms of inactivation of RHOA signalling in colon cancer have not been characterised. METHODS: A panel of colorectal cancer cell lines and large cohorts of primary tumours were used to investigate the expression and activity of RHOA, as well as the presence of RHOA mutations/deletions and promoter methylation affecting RHOA. Changes in RHOA expression were assessed by western blotting and qPCR after modulation of microRNAs, SMAD4 and c-MYC. RESULTS: We show here that RHOA point mutations and promoter hypermethylation do not significantly contribute to the large variability of RHOA expression observed among colorectal tumours. However, RHOA copy number loss was observed in 16% of colorectal tumours and this was associated with reduced RHOA expression. Moreover, we show that miR-200a/b/429 downregulates RHOA in colorectal cancer cells. In addition, we found that TGF-ß/SMAD4 upregulates the RHOA promoter. Conversely, RHOA expression is transcriptionally downregulated by canonical Wnt signalling through the Wnt target gene c-MYC that interferes with the binding of SP1 to the RHOA promoter in colon cancer cells. CONCLUSIONS: We demonstrate a complex pattern of inactivation of the tumour suppressor gene RHOA in colon cancer cells through genetic, transcriptional and post-transcriptional mechanisms.


Assuntos
Neoplasias Colorretais/metabolismo , Variações do Número de Cópias de DNA , Regulação para Baixo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Estudos de Coortes , Neoplasias Colorretais/genética , Metilação de DNA , Feminino , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , Mutação Puntual , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Proteína Smad4/metabolismo , Ativação Transcricional , Via de Sinalização Wnt
2.
Proc Natl Acad Sci U S A ; 109(5): 1530-5, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22307608

RESUMO

The loss of the epithelial architecture and cell polarity/differentiation is known to be important during the tumorigenic process. Here we demonstrate that the brush border protein Myosin Ia (MYO1A) is important for polarization and differentiation of colon cancer cells and is frequently inactivated in colorectal tumors by genetic and epigenetic mechanisms. MYO1A frame-shift mutations were observed in 32% (37 of 116) of the colorectal tumors with microsatellite instability analyzed, and evidence of promoter methylation was observed in a significant proportion of colon cancer cell lines and primary colorectal tumors. The loss of polarization/differentiation resulting from MYO1A inactivation is associated with higher tumor growth in soft agar and in a xenograft model. In addition, the progression of genetically and carcinogen-initiated intestinal tumors was significantly accelerated in Myo1a knockout mice compared with Myo1a wild-type animals. Moreover, MYO1A tumor expression was found to be an independent prognostic factor for colorectal cancer patients. Patients with low MYO1A tumor protein levels had significantly shorter disease-free and overall survival compared with patients with high tumoral MYO1A (logrank test P = 0.004 and P = 0.009, respectively). The median time-to-disease recurrence in patients with low MYO1A was 1 y, compared with >9 y in the group of patients with high MYO1A. These results identify MYO1A as a unique tumor-suppressor gene in colorectal cancer and demonstrate that the loss of structural brush border proteins involved in cell polarity are important for tumor development.


Assuntos
Genes Supressores de Tumor , Mucosa Intestinal/metabolismo , Microvilosidades/metabolismo , Miosina Tipo I/fisiologia , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Metilação de DNA , Humanos , Mutação , Miosina Tipo I/genética , Regiões Promotoras Genéticas
3.
Int J Cancer ; 132(8): 1790-9, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23002058

RESUMO

Brush border Myosin Ia (MYO1A) has been shown to be frequently mutated in colorectal tumors with microsatellite instability (MSI) and to have tumor suppressor activity in intestinal tumors. Here, we investigated the frequency of frameshift mutations in the A8 microsatellite in exon 28 of MYO1A in MSI gastric and endometrial tumors and found a high mutation rate in gastric (22/47; 46.8%) but not endometrial (3/48; 6.2%) tumors. Using a regression model, we show that MYO1A mutations are likely to confer a growth advantage to gastric, but not endometrial tumors. The mutant MYO1A(7A) protein was shown to lose its membrane localization in gastric cancer cells and a cycloheximide-chase assay demonstrated that the mutant MYO1A(7A) protein has reduced stability compared to the wild type MYO1A. Frequent MYO1A promoter hypermethylation was also found in gastric tumors. Promoter methylation negatively correlates with MYO1A mRNA expression in a series of 58 non-MSI gastric primary tumors (Pearson's r = -0.46; p = 0.0003) but not in a cohort of 54 non-MSI endometrial tumors and treatment of gastric cancer cells showing high MYO1A promoter methylation with the demethylating agent 5-aza-2'-deoxycytidine, resulted in a significant increase of MYO1A mRNA levels. We found that normal gastric epithelial cells, but not normal endometrial cells, express high levels of MYO1A. Therefore, when considered together, our findings suggest that MYO1A has tumor suppressor activity in the normal gastric epithelium but not in the normal endometrium and inactivation of MYO1A either genetically or epigenetically may confer gastric epithelial cells a growth advantage.


Assuntos
Neoplasias do Endométrio/genética , Microvilosidades/metabolismo , Cadeias Pesadas de Miosina/genética , Miosina Tipo I/genética , Neoplasias Gástricas/genética , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Sequência de Bases , Western Blotting , Metilação de DNA , Primers do DNA , Decitabina , Neoplasias do Endométrio/patologia , Feminino , Humanos , Microscopia Confocal , Mutação , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Gástricas/patologia
4.
Clin Epigenetics ; 13(1): 88, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33892786

RESUMO

BACKGROUND: Cancer initiation and progression are driven by genetic and epigenetic changes. Although genome/exome sequencing has significantly contributed to the characterization of the genetic driver alterations, further investigation is required to systematically identify cancer driver genes regulated by promoter hypermethylation. RESULTS: Using genome-wide analysis of promoter methylation in 45 colorectal cancer cell lines, we found that higher overall methylation levels were associated with microsatellite instability (MSI), faster proliferation and absence of APC mutations. Because epigenetically silenced genes could represent important oncogenic drivers, we used mRNA expression profiling of colorectal cancer cell lines and primary tumors to identify a subset of 382 (3.9%) genes for which promoter methylation was negatively associated with gene expression. Remarkably, a significant enrichment in zinc finger proteins was observed, including the transcriptional repressor ZBTB18. Re-introduction of ZBTB18 in colon cancer cells significantly reduced proliferation in vitro and in a subcutaneous xenograft mouse model. Moreover, immunohistochemical analysis revealed that ZBTB18 is frequently lost or reduced in colorectal tumors, and reduced ZBTB18 expression was found to be associated with lymph node metastasis and shorter survival of patients with locally advanced colorectal cancer. CONCLUSIONS: We identified a set of 382 genes putatively silenced by promoter methylation in colorectal cancer that could significantly contribute to the oncogenic process. Moreover, as a proof of concept, we demonstrate that the epigenetically silenced gene ZBTB18 has tumor suppressor activity and is a novel prognostic marker for patients with locally advanced colorectal cancer.


Assuntos
Neoplasias Colorretais/genética , Metilação de DNA/genética , Epigênese Genética/genética , Genes Supressores de Tumor , Estudo de Associação Genômica Ampla/métodos , Proteínas Repressoras/genética , Linhagem Celular Tumoral , Humanos
5.
Eur J Nutr ; 47(8): 442-52, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18931964

RESUMO

Proanthocyanidins (PAs) in apples are condensed tannins comprised mostly of (-)-epicatechin units with some terminal (+)-catechins. PAs, especially those having a long chain-length, are absorbed in the upper intestine only to a small extent and are passed to the colon. In the colon they are subjected to microbial metabolism by colonic microbiota. In the present article, the ability of human microbiota to ferment apple PAs is studied. Freeze-dried fruit preparations (apple, enzymatically digested apple, isolated cell-walls, isolated PAs or ciders) from two varieties, Marie Ménard and Avrolles, containing PAs of different chain lengths, were compared. Fermentation studies were performed in an in vitro colon model using human faecal microbiota as an inoculum. The maximal extent of conversion to known microbial metabolites, was observed at late time point for Marie Ménard cider, having short PAs. In this case, the initial dose also contributed to the extent of conversion. Long-chain PAs were able to inhibit the in vitro microbial metabolism of PAs shown as low maxima at early time points. Presence of isolated PAs also suppressed SCFA formation from carbohydrates as compared with that from apple cell wall or faecal suspension without substrates. The low maximal extents at early time points suggest that there is a competition between the inhibitory effect of the PAs on microbial activity, and the ability to convert PAs by the microbiota.


Assuntos
Bactérias/metabolismo , Ácidos Graxos Voláteis/biossíntese , Fezes/microbiologia , Flavonoides/metabolismo , Hidroxibenzoatos/metabolismo , Malus/química , Fenóis/metabolismo , Proantocianidinas/metabolismo , Colo/metabolismo , Colo/microbiologia , Fermentação , Frutas , Humanos , Polifenóis
6.
Mol Oncol ; 12(8): 1383-1397, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29885053

RESUMO

Gastrointestinal stromal tumors (GISTs) represent about 80% of the mesenchymal neoplasms of the gastrointestinal tract. Most GISTs contain oncogenic KIT (85%) or PDGFRA (5%) receptors. The kinase inhibitor imatinib mesylate is the preferential treatment for these tumors; however, the development of drug resistance has highlighted the need for novel therapeutic strategies. Recently, we reported that the adaptor molecule SH3 Binding Protein 2 (SH3BP2) regulates KIT expression and signaling in human mast cells. Our current study shows that SH3BP2 is expressed in primary tumors and cell lines from GIST patients and that SH3BP2 silencing leads to a downregulation of oncogenic KIT and PDGFRA expression and an increase in apoptosis in imatinib-sensitive and imatinib-resistant GIST cells. The microphthalmia-associated transcription factor (MITF), involved in KIT expression in mast cells and melanocytes, is expressed in GISTs. Interestingly, MITF is reduced after SH3BP2 silencing. Importantly, reconstitution of both SH3BP2 and MITF restores cell viability. Furthermore, SH3BP2 silencing significantly reduces cell migration and tumor growth of imatinib-sensitive and imatinib-resistant cells in vivo. Altogether, SH3BP2 regulates KIT and PDGFRA expression and cell viability, indicating a role as a potential target in imatinib-sensitive and imatinib-resistant GISTs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias Gastrointestinais/genética , Tumores do Estroma Gastrointestinal/genética , Inativação Gênica , Proteínas Proto-Oncogênicas c-kit/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Feminino , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/patologia , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Mesilato de Imatinib/farmacologia , Camundongos Nus
7.
Sci Rep ; 7: 41576, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28169277

RESUMO

EPH signaling deregulation has been shown to be important for colorectal carcinogenesis and genome-wide sequencing efforts have identified EPHA3 as one of the most frequently mutated genes in these tumors. However, the role of EPHA3 in colorectal cancer has not been thoroughly investigated. We show here that ectopic expression of wild type EPHA3 in colon cancer cells did not affect their growth, motility/invasion or metastatic potential in vivo. Moreover, overexpression of mutant EPHA3 or deletion of the endogenous mutant EPHA3 in colon cancer cells did not affect their growth or motility. EPHA3 inactivation in mice did not initiate the tumorigenic process in their intestine, and had no effects on tumor size/multiplicity after tumor initiation either genetically or pharmacologically. In addition, immunohistochemical analysis of EPHA3 tumor levels did not reveal associations with survival or clinicopathological features of colorectal cancer patients. In conclusion, we show that EPHA3 does not play a major role in colorectal tumorigenesis. These results significantly contribute to our understanding of the role of EPH signaling during colorectal carcinogenesis, and highlighting the need for detailed functional studies to confirm the relevance of putative cancer driver genes identified in sequencing efforts of the cancer genome.


Assuntos
Neoplasias Colorretais/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transformação Celular Neoplásica , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Expressão Gênica , Genótipo , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Knockout , Metástase Neoplásica , Receptores Proteína Tirosina Quinases/genética , Receptor EphA3 , Transdução de Sinais
8.
Sci Rep ; 7: 43702, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28262839

RESUMO

Although deregulation of EPHB signaling has been shown to be an important step in colorectal tumorigenesis, the role of EPHB6 in this process has not been investigated. We found here that manipulation of EPHB6 levels in colon cancer cell lines has no effect on their motility and growth on a solid substrate, soft agar or in a xenograft mouse model. We then used an EphB6 knockout mouse model to show that EphB6 inactivation does not efficiently initiate tumorigenesis in the intestinal tract. In addition, when intestinal tumors are initiated genetically or pharmacologically in EphB6+/+ and EphB6-/- mice, no differences were observed in animal survival, tumor multiplicity, size or histology, and proliferation of intestinal epithelial cells or tumor cells. However, reintroduction of EPHB6 into colon cancer cells significantly reduced the number of lung metastasis after tail-vein injection in immunodeficient mice, while EPHB6 knockdown in EPHB6-expressing cells increased their metastatic spread. Consistently, although EPHB6 protein expression in a series of 130 primary colorectal tumors was not associated with patient survival, EPHB6 expression was significantly lower in lymph node metastases compared to primary tumors. Our results indicate that the loss of EPHB6 contributes to the metastatic process of colorectal cancer.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Receptores da Família Eph/deficiência , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transformação Celular Neoplásica/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Modelos Animais de Doenças , Expressão Gênica , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Receptores da Família Eph/genética , Receptores da Família Eph/metabolismo
9.
Clin Cancer Res ; 21(16): 3695-704, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25944804

RESUMO

PURPOSE: The clinical management of colorectal cancer patients has significantly improved because of the identification of novel therapeutic targets such as EGFR and VEGF. Because rapid tumor proliferation is associated with poor patient prognosis, here we characterized the transcriptional signature of rapidly proliferating colorectal cancer cells in an attempt to identify novel candidate therapeutic targets. EXPERIMENTAL DESIGN: The doubling time of 52 colorectal cancer cell lines was determined and genome-wide expression profiling of a subset of these lines was assessed by microarray analysis. We then investigated the potential of genes highly expressed in cancer cells with faster growth as new therapeutic targets. RESULTS: Faster proliferation rates were associated with microsatellite instability and poorly differentiated histology. The expression of 1,290 genes was significantly correlated with the growth rates of colorectal cancer cells. These included genes involved in cell cycle, RNA processing/splicing, and protein transport. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and protoporphyrinogen oxidase (PPOX) were shown to have higher expression in faster growing cell lines and primary tumors. Pharmacologic or siRNA-based inhibition of GAPDH or PPOX reduced the growth of colon cancer cells in vitro. Moreover, using a mouse xenograft model, we show that treatment with the specific PPOX inhibitor acifluorfen significantly reduced the growth of three of the seven (42.8%) colon cancer lines investigated. CONCLUSIONS: We have characterized at the transcriptomic level the differences between colorectal cancer cells that vary in their growth rates, and identified novel candidate chemotherapeutic targets for the treatment of colorectal cancer.


Assuntos
Neoplasias Colorretais/genética , Flavoproteínas/biossíntese , Gliceraldeído-3-Fosfato Desidrogenases/biossíntese , Proteínas Mitocondriais/biossíntese , Proteínas de Neoplasias/biossíntese , Protoporfirinogênio Oxidase/biossíntese , Animais , Ciclo Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Feminino , Flavoproteínas/antagonistas & inibidores , Flavoproteínas/genética , Regulação Neoplásica da Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenases/genética , Células HCT116 , Humanos , Masculino , Camundongos , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Terapia de Alvo Molecular , Proteínas de Neoplasias/genética , Nitrobenzoatos/administração & dosagem , Transporte Proteico/genética , Protoporfirinogênio Oxidase/antagonistas & inibidores , Protoporfirinogênio Oxidase/genética , Splicing de RNA/genética , RNA Interferente Pequeno , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Sci Rep ; 5: 12312, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26201991

RESUMO

Inherited MYO5B mutations have recently been associated with microvillus inclusion disease (MVID), an autosomal recessive syndrome characterized by intractable, life-threatening, watery diarrhea appearing shortly after birth. Characterization of the molecular mechanisms underlying this disease and development of novel therapeutic approaches is hampered by the lack of animal models. In this study we describe the phenotype of a novel mouse model with targeted inactivation of Myo5b. Myo5b knockout mice show perinatal mortality, diarrhea and the characteristic mislocalization of apical and basolateral plasma membrane markers in enterocytes. Moreover, in transmission electron preparations, we observed microvillus atrophy and the presence of microvillus inclusion bodies. Importantly, Myo5b knockout embryos at day 20 of gestation already display all these structural defects, indicating that they are tissue autonomous rather than secondary to environmental cues, such as the long-term absence of nutrients in the intestine. Myo5b knockout mice closely resemble the phenotype of MVID patients and constitute a useful model to further investigate the underlying molecular mechanism of this disease and to preclinically assess the efficacy of novel therapeutic approaches.


Assuntos
Diarreia/patologia , Diarreia/fisiopatologia , Modelos Animais de Doenças , Síndromes de Malabsorção/patologia , Síndromes de Malabsorção/fisiopatologia , Microvilosidades/patologia , Mucolipidoses/patologia , Mucolipidoses/fisiopatologia , Miosina Tipo V/genética , Animais , Diarreia/etiologia , Feminino , Síndromes de Malabsorção/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucolipidoses/complicações , Miosina Tipo V/metabolismo
11.
Nat Commun ; 5: 5458, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25413277

RESUMO

Activation of the small GTPase RHOA has strong oncogenic effects in many tumour types, although its role in colorectal cancer remains unclear. Here we show that RHOA inactivation contributes to colorectal cancer progression/metastasis, largely through the activation of Wnt/ß-catenin signalling. RhoA inactivation in the murine intestine accelerates the tumorigenic process and in human colon cancer cells leads to the redistribution of ß-catenin from the membrane to the nucleus and enhanced Wnt/ß-catenin signalling, resulting in increased proliferation, invasion and de-differentiation. In mice, RHOA inactivation contributes to colon cancer metastasis and reduced RHOA levels were observed at metastatic sites compared with primary human colon tumours. Therefore, we have identified a new mechanism of activation of Wnt/ß-catenin signalling and characterized the role of RHOA as a novel tumour suppressor in colorectal cancer. These results constitute a shift from the current paradigm and demonstrate that RHO GTPases can suppress tumour progression and metastasis.


Assuntos
Neoplasias do Colo/enzimologia , Inativação Gênica , Transdução de Sinais , Proteínas Wnt/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Proteínas Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
12.
Clin Cancer Res ; 16(8): 2375-82, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20371676

RESUMO

PURPOSE: Irinotecan (CPT11) treatment significantly improves the survival of colorectal cancer patients and is routinely used for the treatment of these patients, alone or in combination with other agents. However, only 20% to 30% of patients show an objective response to irinotecan, and there is great need for new molecular markers capable of identifying the subset of patients who are unlikely to respond. EXPERIMENTAL DESIGN: Here we used microarray analysis of a panel of 30 colorectal cancer cell lines and immunohistochemistry to identify and validate a new biomarker of response to irinotecan. RESULTS: A good correlation was observed between irinotecan sensitivity and the expression of aprataxin (APTX), a histidine triad domain superfamily protein involved in DNA repair. Moreover, using an isogenic in vitro system deficient in APTX, we show that aprataxin directly regulates the cellular sensitivity to camptothecin, suggesting that it could be used to predict patient response to irinotecan. We constructed a tissue microarray containing duplicate tumor samples from 135 patients that received irinotecan for the treatment of advanced colorectal cancer. Immunohistochemical assessment of the tumor levels of aprataxin showed a significant association with treatment response and patient survival. Patients with low aprataxin had longer progression-free (9.2 versus 5.5 months; P = 0.03) and overall survival (36.7 versus 19.0 months; P = 0.008) than patients with high tumor aprataxin. No associations were found between coding APTX variants and aprataxin levels or camptothecin sensitivity. CONCLUSIONS: These results show that aprataxin tumor levels can be used to identify patients with low probability of response to irinotecan-based therapy who are ideal candidates to receive treatment with alternative agents in an attempt to improve patient survival.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Camptotecina/análogos & derivados , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Camptotecina/uso terapêutico , Proliferação de Células , Neoplasias Colorretais/patologia , Proteínas de Ligação a DNA/genética , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Técnicas Imunoenzimáticas , Irinotecano , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Proteínas Nucleares/genética , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo Genético , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida , Análise Serial de Tecidos , Inibidores da Topoisomerase I , Resultado do Tratamento , Células Tumorais Cultivadas
13.
FEBS Lett ; 583(23): 3804-10, 2009 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-19887068

RESUMO

The intermediate compartment (IC) between the endoplasmic reticulum (ER) and the Golgi apparatus appears to constitute an autonomous organelle composed of spatially and functionally distinct, but interconnected, vacuolar and tubular subdomains. In mammalian cells the IC network is stably anchored at the cell center, communicating directly with the endocytic pathway via a pericentrosomal membrane system (PCMS). This finding suggests that the secretory pathway divides at the level of the IC, which functions as a sorting station both in Golgi-dependent and -independent trafficking. The tubular subdomain of the IC is capable of expansion in accordance with its proposed biosynthetic functions such as cholesterol synthesis.


Assuntos
Compartimento Celular , Complexo de Golgi/metabolismo , Via Secretória , Animais , Transporte Biológico , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/ultraestrutura , Humanos , Membranas Intracelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA