Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 496(7443): 57-63, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23485966

RESUMO

Tapeworms (Cestoda) cause neglected diseases that can be fatal and are difficult to treat, owing to inefficient drugs. Here we present an analysis of tapeworm genome sequences using the human-infective species Echinococcus multilocularis, E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma as examples. The 115- to 141-megabase genomes offer insights into the evolution of parasitism. Synteny is maintained with distantly related blood flukes but we find extreme losses of genes and pathways that are ubiquitous in other animals, including 34 homeobox families and several determinants of stem cell fate. Tapeworms have specialized detoxification pathways, metabolism that is finely tuned to rely on nutrients scavenged from their hosts, and species-specific expansions of non-canonical heat shock proteins and families of known antigens. We identify new potential drug targets, including some on which existing pharmaceuticals may act. The genomes provide a rich resource to underpin the development of urgently needed treatments and control.


Assuntos
Adaptação Fisiológica/genética , Cestoides/genética , Genoma Helmíntico/genética , Parasitos/genética , Animais , Evolução Biológica , Cestoides/efeitos dos fármacos , Cestoides/fisiologia , Infecções por Cestoides/tratamento farmacológico , Infecções por Cestoides/metabolismo , Sequência Conservada/genética , Echinococcus granulosus/genética , Echinococcus multilocularis/efeitos dos fármacos , Echinococcus multilocularis/genética , Echinococcus multilocularis/metabolismo , Genes de Helmintos/genética , Genes Homeobox/genética , Proteínas de Choque Térmico HSP70/genética , Humanos , Hymenolepis/genética , Redes e Vias Metabólicas/genética , Terapia de Alvo Molecular , Parasitos/efeitos dos fármacos , Parasitos/fisiologia , Proteoma/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Taenia solium/genética
2.
Nature ; 477(7363): 203-6, 2011 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-21841803

RESUMO

Supergenes are tight clusters of loci that facilitate the co-segregation of adaptive variation, providing integrated control of complex adaptive phenotypes. Polymorphic supergenes, in which specific combinations of traits are maintained within a single population, were first described for 'pin' and 'thrum' floral types in Primula and Fagopyrum, but classic examples are also found in insect mimicry and snail morphology. Understanding the evolutionary mechanisms that generate these co-adapted gene sets, as well as the mode of limiting the production of unfit recombinant forms, remains a substantial challenge. Here we show that individual wing-pattern morphs in the polymorphic mimetic butterfly Heliconius numata are associated with different genomic rearrangements at the supergene locus P. These rearrangements tighten the genetic linkage between at least two colour-pattern loci that are known to recombine in closely related species, with complete suppression of recombination being observed in experimental crosses across a 400-kilobase interval containing at least 18 genes. In natural populations, notable patterns of linkage disequilibrium (LD) are observed across the entire P region. The resulting divergent haplotype clades and inversion breakpoints are found in complete association with wing-pattern morphs. Our results indicate that allelic combinations at known wing-patterning loci have become locked together in a polymorphic rearrangement at the P locus, forming a supergene that acts as a simple switch between complex adaptive phenotypes found in sympatry. These findings highlight how genomic rearrangements can have a central role in the coexistence of adaptive phenotypes involving several genes acting in concert, by locally limiting recombination and gene flow.


Assuntos
Borboletas/genética , Cromossomos de Insetos/genética , Rearranjo Gênico/genética , Genes de Insetos/genética , Mimetismo Molecular/genética , Polimorfismo Genético/genética , Alelos , Animais , Borboletas/anatomia & histologia , Borboletas/fisiologia , Passeio de Cromossomo , Ligação Genética/genética , Haplótipos/genética , Mimetismo Molecular/fisiologia , Dados de Sequência Molecular , Família Multigênica/genética , Fenótipo , Pigmentação/genética , Pigmentação/fisiologia , Asas de Animais/anatomia & histologia , Asas de Animais/metabolismo , Asas de Animais/fisiologia
3.
Cell Genom ; 4(6): 100580, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38815588

RESUMO

Pathogens are engaged in a fierce evolutionary arms race with their host. The genes at the forefront of the engagement between kingdoms are often part of diverse and highly mutable gene families. Even in this context, we discovered unprecedented variation in the hyper-variable (HYP) effectors of plant-parasitic nematodes. HYP effectors are single-gene loci that potentially harbor thousands of alleles. Alleles vary in the organization, as well as the number, of motifs within a central hyper-variable domain (HVD). We dramatically expand the HYP repertoire of two plant-parasitic nematodes and define distinct species-specific "rules" underlying the apparently flawless genetic rearrangements. Finally, by analyzing the HYPs in 68 individual nematodes, we unexpectedly found that despite the huge number of alleles, most individuals are germline homozygous. These data support a mechanism of programmed genetic variation, termed HVD editing, where alterations are locus specific, strictly governed by rules, and theoretically produce thousands of variants without errors.


Assuntos
Alelos , Animais , Plantas/parasitologia , Plantas/genética , Nematoides/genética , Variação Genética/genética , Doenças das Plantas/parasitologia
4.
Nat Commun ; 13(1): 6190, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261416

RESUMO

Plant-parasitic nematodes are a major threat to crop production in all agricultural systems. The scarcity of classical resistance genes highlights a pressing need to find new ways to develop nematode-resistant germplasm. Here, we sequence and assemble a high-quality phased genome of the model cyst nematode Heterodera schachtii to provide a platform for the first system-wide dual analysis of host and parasite gene expression over time, covering all major parasitism stages. Analysis of the hologenome of the plant-nematode infection site identified metabolic pathways that were incomplete in the parasite but complemented by the host. Using a combination of bioinformatic, genetic, and biochemical approaches, we show that a highly atypical completion of vitamin B5 biosynthesis by the parasitic animal, putatively enabled by a horizontal gene transfer from a bacterium, is required for full pathogenicity. Knockout of either plant-encoded or now nematode-encoded steps in the pathway significantly reduces parasitic success. Our experiments establish a reference for cyst nematodes, further our understanding of the evolution of plant-parasitism by nematodes, and show that congruent differential expression of metabolic pathways in the infection hologenome represents a new way to find nematode susceptibility genes. The approach identifies genome-editing-amenable targets for future development of nematode-resistant crops.


Assuntos
Cistos , Parasitos , Tylenchida , Animais , Ácido Pantotênico , Transcriptoma
5.
G3 (Bethesda) ; 11(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33585878

RESUMO

Plant-parasitic nematodes are a continuing threat to food security, causing an estimated 100 billion USD in crop losses each year. The most problematic are the obligate sedentary endoparasites (primarily root knot nematodes and cyst nematodes). Progress in understanding their biology is held back by a lack of tools for functional genetics: forward genetics is largely restricted to studies of natural variation in populations and reverse genetics is entirely reliant on RNA interference. There is an expectation that the development of functional genetic tools would accelerate the progress of research on plant-parasitic nematodes, and hence the development of novel control solutions. Here, we develop some of the foundational biology required to deliver a functional genetic tool kit in plant-parasitic nematodes. We characterize the gonads of male Heterodera schachtii and Meloidogyne hapla in the context of spermatogenesis. We test and optimize various methods for the delivery, expression, and/or detection of exogenous nucleic acids in plant-parasitic nematodes. We demonstrate that delivery of macromolecules to cyst and root knot nematode male germlines is difficult, but possible. Similarly, we demonstrate the delivery of oligonucleotides to root knot nematode gametes. Finally, we develop a transient expression system in plant-parasitic nematodes by demonstrating the delivery and expression of exogenous mRNA encoding various reporter genes throughout the body of H. schachtii juveniles using lipofectamine-based transfection. We anticipate these developments to be independently useful, will expedite the development of genetic modification tools for plant-parasitic nematodes, and ultimately catalyze research on a group of nematodes that threaten global food security.


Assuntos
Arabidopsis , Tylenchoidea , Animais , Arabidopsis/genética , Masculino , Doenças das Plantas , Interferência de RNA , RNA Mensageiro , Tylenchoidea/genética
6.
Mol Ecol ; 19 Suppl 1: 240-54, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20331783

RESUMO

The mimetic wing patterns of Heliconius butterflies are an excellent example of both adaptive radiation and convergent evolution. Alleles at the HmYb and HmSb loci control the presence/absence of hindwing bar and hindwing margin phenotypes respectively between divergent races of Heliconius melpomene, and also between sister species. Here, we used fine-scale linkage mapping to identify and sequence a BAC tilepath across the HmYb/Sb loci. We also generated transcriptome sequence data for two wing pattern forms of H. melpomene that differed in HmYb/Sb alleles using 454 sequencing technology. Custom scripts were used to process the sequence traces and generate transcriptome assemblies. Genomic sequence for the HmYb/Sb candidate region was annotated both using the MAKER pipeline and manually using transcriptome sequence reads. In total, 28 genes were identified in the HmYb/Sb candidate region, six of which have alternative splice forms. None of these are orthologues of genes previously identified as being expressed in butterfly wing pattern development, implying previously undescribed molecular mechanisms of pattern determination on Heliconius wings. The use of next-generation sequencing has therefore facilitated DNA annotation of a poorly characterized genome, and generated hypotheses regarding the identity of wing pattern at the HmYb/Sb loci.


Assuntos
Borboletas/genética , Perfilação da Expressão Gênica , Asas de Animais , Alelos , Processamento Alternativo , Animais , Borboletas/crescimento & desenvolvimento , Mapeamento Cromossômico , Evolução Molecular , Genes de Insetos , Fenótipo , Análise de Sequência de DNA/métodos
7.
Commun Biol ; 3(1): 656, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168940

RESUMO

Haemonchus contortus is a globally distributed and economically important gastrointestinal pathogen of small ruminants and has become a key nematode model for studying anthelmintic resistance and other parasite-specific traits among a wider group of parasites including major human pathogens. Here, we report using PacBio long-read and OpGen and 10X Genomics long-molecule methods to generate a highly contiguous 283.4 Mbp chromosome-scale genome assembly including a resolved sex chromosome for the MHco3(ISE).N1 isolate. We show a remarkable pattern of conservation of chromosome content with Caenorhabditis elegans, but almost no conservation of gene order. Short and long-read transcriptome sequencing allowed us to define coordinated transcriptional regulation throughout the parasite's life cycle and refine our understanding of cis- and trans-splicing. Finally, we provide a comprehensive picture of chromosome-wide genetic diversity both within a single isolate and globally. These data provide a high-quality comparison for understanding the evolution and genomics of Caenorhabditis and other nematodes and extend the experimental tractability of this model parasitic nematode in understanding helminth biology, drug discovery and vaccine development, as well as important adaptive traits such as drug resistance.


Assuntos
Genoma Helmíntico/genética , Haemonchus/genética , Modelos Biológicos , Transcriptoma/genética , Animais , Caenorhabditis elegans/genética , Cromossomos/genética , Feminino , Genômica , Hemoncose/parasitologia , Haemonchus/metabolismo , Haemonchus/fisiologia , Humanos , Enteropatias Parasitárias/parasitologia , Estágios do Ciclo de Vida/genética , Masculino
8.
PLoS Biol ; 4(10): e303, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17002517

RESUMO

We studied whether similar developmental genetic mechanisms are involved in both convergent and divergent evolution. Mimetic insects are known for their diversity of patterns as well as their remarkable evolutionary convergence, and they have played an important role in controversies over the respective roles of selection and constraints in adaptive evolution. Here we contrast three butterfly species, all classic examples of Müllerian mimicry. We used a genetic linkage map to show that a locus, Yb, which controls the presence of a yellow band in geographic races of Heliconius melpomene, maps precisely to the same location as the locus Cr, which has very similar phenotypic effects in its co-mimic H. erato. Furthermore, the same genomic location acts as a "supergene", determining multiple sympatric morphs in a third species, H. numata. H. numata is a species with a very different phenotypic appearance, whose many forms mimic different unrelated ithomiine butterflies in the genus Melinaea. Other unlinked colour pattern loci map to a homologous linkage group in the co-mimics H. melpomene and H. erato, but they are not involved in mimetic polymorphism in H. numata. Hence, a single region from the multilocus colour pattern architecture of H. melpomene and H. erato appears to have gained control of the entire wing-pattern variability in H. numata, presumably as a result of selection for mimetic "supergene" polymorphism without intermediates. Although we cannot at this stage confirm the homology of the loci segregating in the three species, our results imply that a conserved yet relatively unconstrained mechanism underlying pattern switching can affect mimicry in radically different ways. We also show that adaptive evolution, both convergent and diversifying, can occur by the repeated involvement of the same genomic regions.


Assuntos
Biologia , Padronização Corporal , Borboletas/fisiologia , Modelos Biológicos , Animais , Biodiversidade , Cromossomos Artificiais Bacterianos , Sequência Conservada , Cruzamentos Genéticos , Feminino , Masculino , Repetições de Microssatélites , Modelos Genéticos , Dados de Sequência Molecular , Fenótipo
9.
Nat Genet ; 48(3): 299-307, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26829753

RESUMO

Soil-transmitted nematodes, including the Strongyloides genus, cause one of the most prevalent neglected tropical diseases. Here we compare the genomes of four Strongyloides species, including the human pathogen Strongyloides stercoralis, and their close relatives that are facultatively parasitic (Parastrongyloides trichosuri) and free-living (Rhabditophanes sp. KR3021). A significant paralogous expansion of key gene families--families encoding astacin-like and SCP/TAPS proteins--is associated with the evolution of parasitism in this clade. Exploiting the unique Strongyloides life cycle, we compare the transcriptomes of the parasitic and free-living stages and find that these same gene families are upregulated in the parasitic stages, underscoring their role in nematode parasitism.


Assuntos
Genômica , Strongyloides/genética , Estrongiloidíase/genética , Simbiose/genética , Animais , Evolução Biológica , Humanos , Estágios do Ciclo de Vida/genética , Strongyloides/patogenicidade , Estrongiloidíase/parasitologia , Transcriptoma/genética
10.
Genome Biol ; 15(3): R43, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24580726

RESUMO

BACKGROUND: Globodera pallida is a devastating pathogen of potato crops, making it one of the most economically important plant parasitic nematodes. It is also an important model for the biology of cyst nematodes. Cyst nematodes and root-knot nematodes are the two most important plant parasitic nematode groups and together represent a global threat to food security. RESULTS: We present the complete genome sequence of G. pallida, together with transcriptomic data from most of the nematode life cycle, particularly focusing on the life cycle stages involved in root invasion and establishment of the biotrophic feeding site. Despite the relatively close phylogenetic relationship with root-knot nematodes, we describe a very different gene family content between the two groups and in particular extensive differences in the repertoire of effectors, including an enormous expansion of the SPRY domain protein family in G. pallida, which includes the SPRYSEC family of effectors. This highlights the distinct biology of cyst nematodes compared to the root-knot nematodes that were, until now, the only sedentary plant parasitic nematodes for which genome information was available. We also present in-depth descriptions of the repertoires of other genes likely to be important in understanding the unique biology of cyst nematodes and of potential drug targets and other targets for their control. CONCLUSIONS: The data and analyses we present will be central in exploiting post-genomic approaches in the development of much-needed novel strategies for the control of G. pallida and related pathogens.


Assuntos
Genoma Helmíntico , Estágios do Ciclo de Vida/genética , Transcriptoma , Tylenchoidea/genética , Animais , Sequência de Bases , Regulação da Expressão Gênica no Desenvolvimento , Dados de Sequência Molecular , Filogenia , Tylenchoidea/crescimento & desenvolvimento , Tylenchoidea/parasitologia , Virulência/genética
11.
Genome Biol ; 14(8): R88, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23985316

RESUMO

BACKGROUND: The small ruminant parasite Haemonchus contortus is the most widely used parasitic nematode in drug discovery, vaccine development and anthelmintic resistance research. Its remarkable propensity to develop resistance threatens the viability of the sheep industry in many regions of the world and provides a cautionary example of the effect of mass drug administration to control parasitic nematodes. Its phylogenetic position makes it particularly well placed for comparison with the free-living nematode Caenorhabditis elegans and the most economically important parasites of livestock and humans. RESULTS: Here we report the detailed analysis of a draft genome assembly and extensive transcriptomic dataset for H. contortus. This represents the first genome to be published for a strongylid nematode and the most extensive transcriptomic dataset for any parasitic nematode reported to date. We show a general pattern of conservation of genome structure and gene content between H. contortus and C. elegans, but also a dramatic expansion of important parasite gene families. We identify genes involved in parasite-specific pathways such as blood feeding, neurological function, and drug metabolism. In particular, we describe complete gene repertoires for known drug target families, providing the most comprehensive understanding yet of the action of several important anthelmintics. Also, we identify a set of genes enriched in the parasitic stages of the lifecycle and the parasite gut that provide a rich source of vaccine and drug target candidates. CONCLUSIONS: The H. contortus genome and transcriptome provide an essential platform for postgenomic research in this and other important strongylid parasites.


Assuntos
Antígenos de Helmintos/genética , Genes de Helmintos , Genoma Helmíntico , Haemonchus/genética , Filogenia , Transcriptoma , Animais , Anti-Helmínticos/farmacologia , Caenorhabditis elegans/classificação , Caenorhabditis elegans/genética , Resistência a Medicamentos/genética , Regulação da Expressão Gênica , Hemoncose/parasitologia , Hemoncose/veterinária , Haemonchus/classificação , Haemonchus/efeitos dos fármacos , Interações Hospedeiro-Parasita , Homologia de Sequência do Ácido Nucleico , Ovinos , Doenças dos Ovinos/parasitologia , Especificidade da Espécie
12.
Methods Mol Biol ; 772: 37-58, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22065431

RESUMO

Large insert genome libraries have been a core resource required to sequence genomes, analyze haplotypes, and aid gene discovery. While next generation sequencing technologies are revolutionizing the field of genomics, traditional genome libraries will still be required for accurate genome assembly. Their utility is also being extended to functional studies for understanding DNA regulatory elements. Here, we present a detailed method for constructing genomic fosmid libraries, testing for common contaminants, gridding the library to nylon membranes, then hybridizing the library membranes with a radiolabeled probe to identify corresponding genomic clones. While this chapter focuses on fosmid libraries, many of these steps can also be applied to bacterial artificial chromosome libraries.


Assuntos
DNA/genética , Biblioteca Genômica , Genômica/métodos , Bacteriófagos , Células Clonais , Contaminação por DNA , Sondas de DNA/metabolismo , Eletricidade , Escherichia coli/virologia , Vetores Genéticos/genética , Membranas Artificiais , Reprodutibilidade dos Testes
13.
Methods Mol Biol ; 772: 59-81, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22065432

RESUMO

Sequencing large insert clones to completion is useful for characterizing specific genomic regions, identifying haplotypes, and closing gaps in whole genome sequencing projects. Despite being a standard technique in molecular laboratories, DNA sequencing using the Sanger method can be highly problematic when complex secondary structures or sequence repeats are encountered in genomic clones. Here, we describe methods to isolate DNA from a large insert clone (fosmid or BAC), subclone the sample, and sequence the region to the highest industry standard. Troubleshooting solutions for sequencing difficult templates are discussed.


Assuntos
Clonagem Molecular/métodos , DNA/genética , Biblioteca Genômica , Genômica/métodos , Análise de Sequência de DNA/métodos , Sequência de Bases , Cromossomos Artificiais Bacterianos/genética , Células Clonais , Bases de Dados Genéticas , Vetores Genéticos/genética , Dados de Sequência Molecular
14.
Theor Appl Genet ; 106(4): 629-35, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12595991

RESUMO

Analysis of a cDNA library from wheat cv Wyuna endosperm, indicated a significant size and sequence variation among seed-endosperm protein genes. In this study, a family of low-molecular-weight seed protein genes are analysed that are related to the gliadins and the low-molecular-weight glutenin subunits. Sequence analysis and comparison of these proteins showed that they are closely related to a 17-kDa protein from barley, epsilon hordein, which plays a role in beer foam stability in the brewing industry. Mapping of these genes in wheat shows that they are located on group 7 and 4 chromosomes, as opposed to a group 1 and 6 location for the glutenins and gliadins. It is possible that this family of proteins forms a new class of seed-endosperm proteins important in defining the quality characteristics of wheat flour. Therefore, a representative gene from this family was expressed in Escherichia coli and the purified protein was supplemented into a base wheat flour. Rheological analysis showed that the protein effected dough strength and resistance break down during mixing of the dough, and provided a 20% increase in loaf height after baking.


Assuntos
Pão , Gliadina/genética , Glutens/análogos & derivados , Glutens/genética , Triticum/genética , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , Clonagem Molecular , DNA Complementar/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Etiquetas de Sequências Expressas , Genes de Plantas , Dados de Sequência Molecular , Peso Molecular , Proteínas de Plantas/genética , Plasmídeos/metabolismo , Polimorfismo de Nucleotídeo Único , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Fatores de Tempo
15.
J Environ Sci Health B ; 38(3): 281-91, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12716046

RESUMO

An enzyme-linked immunosorbent assay (ELISA) for pyrithiobac-sodium (Staple) produced by DuPont was validated in Australian soils. This pyrithiobac-sodium ELISA was shown to be highly sensitive with the limit of detection of 4-5 ppt. Soil samples were extracted either in PBS buffer by shaking or by accelerated solvent extraction (ASE). While pyrithiobac sodium can be analyzed directly by ELISA after ASE extraction with 1/10 or more dilutions, the analysis of PBS extract required filtration and dilution 1/20 or more depending on the concentration. Immunoassay results compared favorably with GC-MS results for both ASE and PBS extract of incurred residue of pyrithiobac sodium in soil samples, indicating that this ELISA can be an inexpensive and reliable alternative to conventional residue analysis methods for quantification of pyrithiobac-sodium. This validation provided the basis for applying the ELISA to a field study of pyrithiobac-sodium.


Assuntos
Benzoatos/análise , Ensaio de Imunoadsorção Enzimática/métodos , Herbicidas/análise , Resíduos de Praguicidas/análise , Poluentes do Solo/análise , Cromatografia Gasosa-Espectrometria de Massas , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA