Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 31(22): 6114-21, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26020573

RESUMO

Thin films can integrate the versatility and great potential found in the emerging field of metal-organic frameworks directly into device architectures. For fabrication of smart interfaces containing surface-anchored metal-organic frameworks, it is important to understand how the foundational layers form to create the interface between the underlying substrate and porous framework. Herein, the formation and morphology of the first ten cycles of film deposition are investigated for the well-studied HKUST-1 system. Effects of processing variables, such as deposition temperature and substrate quality, are studied. Sequences of scanning probe microscopy images collected after cycles of alternating solution-phase deposition reveal the formation of a discontinuous surface with nucleating and growing crystallites consistent with a Volmer-Weber growth mechanism. Quantitative image analysis determines surface roughness and surface coverage as a function of deposition cycles, producing insight regarding growth and structure of foundational film layers. For carboxylic acid terminated self-assembled monolayers on gold, preferred crystal orientation is influenced by deposition temperature with crystal growth along [100] observed at 25 °C and [111] favored at 50 °C. This difference in crystal orientation results in reduced surface roughness and increased surface coverage at 50 °C. To properly fabricate and fully determine the potential of this material for industrial applications, fundamental understanding of film formation is crucial.

2.
Nanomaterials (Basel) ; 8(9)2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30142895

RESUMO

Metal-organic frameworks (MOFs) are extremely porous, crystalline materials with high surface area for potential use in gas storage, sequestration, and separations. Toward incorporation into structures for these applications, this study compares three variations of surface-bound and free-standing HKUST-1 MOF structures: surface-anchored MOF (surMOF) thin film, drop-cast film, and bulk powder. Herein, effects of HKUST-1 ammonia interaction and framework activation, which is removal of guest molecules via heat, are investigated. Impact on morphology and crystal structure as a function of surface confinement and size variance are examined. Scanning probe microscopy, scanning electron microscopy, powder X-ray diffraction, Fourier-transform infrared spectroscopy, and energy dispersive X-ray spectroscopy monitor changes in morphology and crystal structure, track ammonia uptake, and examine elemental composition. After fabrication, ammonia uptake is observed for all MOF variations, but reveals dramatic morphological and crystal structure changes. However, activation of the framework was found to stabilize morphology. For activated surMOF films, findings demonstrate consistent morphology throughout uptake, removal, and recycling of ammonia over multiple exposures. To understand morphological effects, additional ammonia exposure experiments with controlled post-synthetic solvent adsorbates were conducted utilizing a HKUST-1 standard powder. These findings are foundational for determining the capabilities and limitation of MOF films and powders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA