Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Genome Ed ; 3: 760820, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35098208

RESUMO

Delivery of genome editing reagents using CRISPR-Cas ribonucleoproteins (RNPs) transfection offers several advantages over plasmid DNA-based delivery methods, including reduced off-target editing effects, mitigation of random integration of non-native DNA fragments, independence of vector constructions, and less regulatory restrictions. Compared to the use in animal systems, RNP-mediated genome editing is still at the early development stage in plants. In this study, we established an efficient and simplified protoplast-based genome editing platform for CRISPR-Cas RNP delivery, and then evaluated the efficiency, specificity, and temperature sensitivity of six Cas9 and Cas12a proteins. Our results demonstrated that Cas9 and Cas12a RNP delivery resulted in genome editing frequencies (8.7-41.2%) at various temperature conditions, 22°C, 26°C, and 37°C, with no significant temperature sensitivity. LbCas12a often exhibited the highest activities, while AsCas12a demonstrated higher sequence specificity. The high activities of CRISPR-Cas RNPs at 22° and 26°C, the temperature preferred by plant transformation and tissue culture, led to high mutagenesis efficiencies (34.0-85.2%) in the protoplast-regenerated calli and plants with the heritable mutants recovered in the next generation. This RNP delivery approach was further extended to pennycress (Thlaspi arvense), soybean (Glycine max) and Setaria viridis with up to 70.2% mutagenesis frequency. Together, this study sheds light on the choice of RNP reagents to achieve efficient transgene-free genome editing in plants.

2.
Nat Commun ; 12(1): 3908, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162850

RESUMO

Though AsCas12a fills a crucial gap in the current genome editing toolbox, it exhibits relatively poor editing efficiency, restricting its overall utility. Here we isolate an engineered variant, "AsCas12a Ultra", that increased editing efficiency to nearly 100% at all sites examined in HSPCs, iPSCs, T cells, and NK cells. We show that AsCas12a Ultra maintains high on-target specificity thereby mitigating the risk for off-target editing and making it ideal for complex therapeutic genome editing applications. We achieved simultaneous targeting of three clinically relevant genes in T cells at >90% efficiency and demonstrated transgene knock-in efficiencies of up to 60%. We demonstrate site-specific knock-in of a CAR in NK cells, which afforded enhanced anti-tumor NK cell recognition, potentially enabling the next generation of allogeneic cell-based therapies in oncology. AsCas12a Ultra is an advanced CRISPR nuclease with significant advantages in basic research and in the production of gene edited cell medicines.


Assuntos
Acidaminococcus/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Endonucleases/metabolismo , Edição de Genes/métodos , Acidaminococcus/genética , Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/genética , Células Cultivadas , Endonucleases/genética , Células HEK293 , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Jurkat , Células Matadoras Naturais/metabolismo , Reprodutibilidade dos Testes , Linfócitos T/metabolismo
3.
Enzyme Microb Technol ; 119: 1-9, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30243380

RESUMO

Three threonine aldolases (TAs) were cloned and overexpressed in Escherichia coli (Aeromonas jandaeil-allo-threonine aldolase, E. colil-threonine aldolase and Thermotoga maritimal-allo-threonine aldolase). A Design of Experiments strategy was used to identify optimal reaction conditions for each enzyme. These conditions were used to characterize the substrate- and stereoselectivity of each TA toward a panel of aldehyde acceptors. In general, the A. jandaei TA performed best, and six representative conversions were scaled up 10-fold in order to develop downstream steps for product isolation. One key improvement was to treat the crude reaction product with Bacillus subtilis glycine oxidase, which eliminated residual starting material and significantly simplified product isolation. NMR studies were used to identify the major and minor diastereomers from the preparative-scale reactions and the absolute configurations for three representative cases.


Assuntos
Aeromonas/enzimologia , Escherichia coli/enzimologia , Glicina Hidroximetiltransferase/metabolismo , Thermotoga maritima/enzimologia , Aldeídos/metabolismo , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Bacillus subtilis/enzimologia , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/isolamento & purificação , Especificidade por Substrato , Treonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA