Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 89(6): e0059423, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37199672

RESUMO

Extracellular vesicles are small (approximately 50 to 250 nm in diameter), membrane-bound structures that are released by cells into their surrounding environment. Heterogeneous populations of vesicles are abundant in the global oceans, and they likely play a number of ecological roles in these microbially dominated ecosystems. Here, we examine how vesicle production and size vary among different strains of cultivated marine microbes as well as explore the degree to which this is influenced by key environmental variables. We show that both vesicle production rates and vesicle sizes significantly differ among cultures of marine Proteobacteria, Cyanobacteria, and Bacteroidetes. Further, these properties vary within individual strains as a function of differences in environmental conditions, such as nutrients, temperature, and light irradiance. Thus, both community composition and the local abiotic environment are expected to modulate the production and standing stock of vesicles in the oceans. Examining samples from the oligotrophic North Pacific Gyre, we show depth-dependent changes in the abundance of vesicle-like particles in the upper water column in a manner that is broadly consistent with culture observations: the highest vesicle abundances are found near the surface, where the light irradiances and the temperatures are the greatest, and they then decrease with depth. This work represents the beginnings of a quantitative framework for describing extracellular vesicle dynamics in the oceans, which is essential as we begin to incorporate vesicles into our ecological and biogeochemical understanding of marine ecosystems. IMPORTANCE Bacteria release extracellular vesicles that contain a wide variety of cellular compounds, including lipids, proteins, nucleic acids, and small molecules, into their surrounding environment. These structures are found in diverse microbial habitats, including the oceans, where their distributions vary throughout the water column and likely affect their functional impacts within microbial ecosystems. Using a quantitative analysis of marine microbial cultures, we show that bacterial vesicle production in the oceans is shaped by a combination of biotic and abiotic factors. Different marine taxa release vesicles at rates that vary across an order of magnitude, and vesicle production changes dynamically as a function of environmental conditions. These findings represent a step forward in our understanding of bacterial extracellular vesicle production dynamics and provide a basis for the quantitative exploration of the factors that shape vesicle dynamics in natural ecosystems.


Assuntos
Cianobactérias , Vesículas Extracelulares , Água do Mar/microbiologia , Ecossistema , Água
2.
Proc Natl Acad Sci U S A ; 114(27): E5424-E5433, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28630351

RESUMO

Lanthipeptides are ribosomally derived peptide secondary metabolites that undergo extensive posttranslational modification. Prochlorosins are a group of lanthipeptides produced by certain strains of the ubiquitous marine picocyanobacteria Prochlorococcus and Synechococcus Unlike other lanthipeptide-producing bacteria, picocyanobacteria use an unprecedented mechanism of substrate promiscuity for the production of numerous and diverse lanthipeptides using a single lanthionine synthetase. Through a cross-scale analysis of prochlorosin biosynthesis genes-from genomes to oceanic populations-we show that marine picocyanobacteria have the collective capacity to encode thousands of different cyclic peptides, few of which would display similar ring topologies. To understand how this extensive structural diversity arises, we used deep sequencing of wild populations to reveal genetic variation patterns in prochlorosin genes. We present evidence that structural variability among prochlorosins is the result of a diversifying selection process that favors large, rather than small, sequence changes in the precursor peptide genes. This mode of molecular evolution disregards any conservation of the ancestral structure and enables the emergence of extensively different cyclic peptides through short mutational paths based on indels. Contrary to its fast-evolving peptide substrates, the prochlorosin lanthionine synthetase evolves under a strong purifying selection, indicating that the diversification of prochlorosins is not constrained by commensurate changes in the biosynthetic enzyme. This evolutionary interplay between the prochlorosin peptide substrates and the lanthionine synthetase suggests that structure diversification, rather than structure refinement, is the driving force behind the creation of new prochlorosin structures and represents an intriguing mechanism by which natural product diversity arises.


Assuntos
Alanina/análogos & derivados , Cianobactérias/química , Peptídeos/química , Prochlorococcus/química , Sulfetos/química , Synechococcus/química , Alanina/química , Teorema de Bayes , Produtos Biológicos/química , Análise por Conglomerados , Biologia Computacional , Evolução Molecular , Variação Genética , Genoma , Método de Monte Carlo , Peptídeos Cíclicos/química , Fotossíntese , Filogenia , Reação em Cadeia da Polimerase
3.
Environ Microbiol ; 16(9): 2815-30, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24118765

RESUMO

A considerable fraction of the Earth's organic carbon exists in dissolved form in seawater. To investigate the roles of planktonic marine microbes in the biogeochemical cycling of this dissolved organic matter (DOM), we performed controlled seawater incubation experiments and followed the responses of an oligotrophic surface water microbial assemblage to perturbations with DOM derived from an axenic culture of Prochlorococcus, or high-molecular weight DOM concentrated from nearby surface waters. The rapid transcriptional responses of both Prochlorococcus and Pelagibacter populations suggested the utilization of organic nitrogen compounds common to both DOM treatments. Along with these responses, both populations demonstrated decreases in gene transcripts associated with nitrogen stress, including those involved in ammonium acquisition. In contrast, responses from low abundance organisms of the NOR5/OM60 gammaproteobacteria were observed later in the experiment, and included elevated levels of gene transcripts associated with polysaccharide uptake and oxidation. In total, these results suggest that numerically dominant oligotrophic microbes rapidly acquire nitrogen from commonly available organic sources, and also point to an important role for carbohydrates found within the DOM pool for sustaining the less abundant microorganisms in these oligotrophic systems.


Assuntos
Gammaproteobacteria/genética , Nitrogênio/metabolismo , Compostos Orgânicos/metabolismo , Prochlorococcus/genética , Água do Mar/microbiologia , DNA Bacteriano/genética , Gammaproteobacteria/metabolismo , Metagenoma , Prochlorococcus/metabolismo , RNA Bacteriano/genética , Análise de Sequência de DNA , Transcrição Gênica , Transcriptoma
4.
Proc Natl Acad Sci U S A ; 107(38): 16420-7, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20807744

RESUMO

Marine dissolved organic matter (DOM) contains as much carbon as the Earth's atmosphere, and represents a critical component of the global carbon cycle. To better define microbial processes and activities associated with marine DOM cycling, we analyzed genomic and transcriptional responses of microbial communities to high-molecular-weight DOM (HMWDOM) addition. The cell density in the unamended control remained constant, with very few transcript categories exhibiting significant differences over time. In contrast, the DOM-amended microcosm doubled in cell numbers over 27 h, and a variety of HMWDOM-stimulated transcripts from different taxa were observed at all time points measured relative to the control. Transcripts significantly enriched in the HMWDOM treatment included those associated with two-component sensor systems, phosphate and nitrogen assimilation, chemotaxis, and motility. Transcripts from Idiomarina and Alteromonas spp., the most highly represented taxa at the early time points, included those encoding TonB-associated transporters, nitrogen assimilation genes, fatty acid catabolism genes, and TCA cycle enzymes. At the final time point, Methylophaga rRNA and non-rRNA transcripts dominated the HMWDOM-amended microcosm, and included gene transcripts associated with both assimilatory and dissimilatory single-carbon compound utilization. The data indicated specific resource partitioning of DOM by different bacterial species, which results in a temporal succession of taxa, metabolic pathways, and chemical transformations associated with HMWDOM turnover. These findings suggest that coordinated, cooperative activities of a variety of bacterial "specialists" may be critical in the cycling of marine DOM, emphasizing the importance of microbial community dynamics in the global carbon cycle.


Assuntos
Fenômenos Microbiológicos , Água do Mar/química , Água do Mar/microbiologia , Microbiologia da Água , Carbono/metabolismo , Bases de Dados Genéticas , Ecossistema , Perfilação da Expressão Gênica , Redes e Vias Metabólicas , Metagenômica , Modelos Biológicos , Dados de Sequência Molecular , Compostos Orgânicos/metabolismo
5.
mSystems ; 8(5): e0126122, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37815355

RESUMO

IMPORTANCE: Approximately half of the annual carbon fixation on Earth occurs in the surface ocean through the photosynthetic activities of phytoplankton such as the ubiquitous picocyanobacterium Prochlorococcus. Ecologically distinct subpopulations (or ecotypes) of Prochlorococcus are central conduits of organic substrates into the ocean microbiome, thus playing important roles in surface ocean production. We measured the chemical profile of three cultured ecotype strains, observing striking differences among them that have implications for the likely chemical impact of Prochlorococcus subpopulations on their surroundings in the wild. Subpopulations differ in abundance along gradients of temperature, light, and nutrient concentrations, suggesting that these chemical differences could affect carbon cycling in different ocean strata and should be considered in models of Prochlorococcus physiology and marine carbon dynamics.


Assuntos
Ecótipo , Prochlorococcus , Água do Mar/microbiologia , Prochlorococcus/metabolismo , Fotossíntese , Carbono/metabolismo
6.
BMC Genom Data ; 24(1): 11, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829130

RESUMO

OBJECTIVES: The marine cyanobacterium Prochlorococcus is a critical part of warm ocean ecosystems and a model for studying microbial evolution and ecology. To expand the representation of this organism's vast wild diversity in sequence collections, we performed a set of isolation efforts targeting low light-adapted Prochlorococcus. Three genomes resulting from this larger body of work are described here. DATA DESCRIPTION: We present draft-quality Prochlorococcus genomes from enrichment cultures P1344, P1361, and P1363, sampled in the North Pacific. The genomes were built from Illumina paired reads assembled de novo. Supporting datasets of raw reads, assessments, and sequences from co-enriched heterotrophic marine bacteria are also provided. These three genomes represent members of the low light-adapted LLIV Prochlorococcus clade that are closely related, with 99.9% average nucleotide identity between pairs, yet vary in gene content. Expanding the powerful toolkit of Prochlorococcus genomes, these sequences provide an opportunity to study fine-scale variation and microevolutionary processes.


Assuntos
Ecossistema , Prochlorococcus , Filogenia , Genoma Bacteriano , Prochlorococcus/genética , Ecologia , Bactérias/genética
7.
mSphere ; 6(3)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980670

RESUMO

Interactions between phytoplankton and heterotrophic bacteria fundamentally shape marine ecosystems by controlling primary production, structuring marine food webs, mediating carbon export, and influencing global climate. Phytoplankton-bacterium interactions are facilitated by secreted compounds; however, linking these chemical signals, their mechanisms of action, and their resultant ecological consequences remains a fundamental challenge. The bacterial quorum-sensing signal 2-heptyl-4-quinolone (HHQ) induces immediate, yet reversible, cellular stasis (no cell division or mortality) in the coccolithophore Emiliania huxleyi; however, the mechanism responsible remains unknown. Using transcriptomic and proteomic approaches in combination with diagnostic biochemical and fluorescent cell-based assays, we show that HHQ exposure leads to prolonged S-phase arrest in phytoplankton coincident with the accumulation of DNA damage and a lack of repair despite the induction of the DNA damage response (DDR). While this effect is reversible, HHQ-exposed phytoplankton were also protected from viral mortality, ascribing a new role of quorum-sensing signals in regulating multitrophic interactions. Furthermore, our data demonstrate that in situ measurements of HHQ coincide with areas of enhanced micro- and nanoplankton biomass. Our results suggest bacterial communication signals as emerging players that may be one of the contributing factors that help structure complex microbial communities throughout the ocean.IMPORTANCE Bacteria and phytoplankton form close associations in the ocean that are driven by the exchange of chemical compounds. The bacterial signal 2-heptyl-4-quinolone (HHQ) slows phytoplankton growth; however, the mechanism responsible remains unknown. Here, we show that HHQ exposure leads to the accumulation of DNA damage in phytoplankton and prevents its repair. While this effect is reversible, HHQ-exposed phytoplankton are also relieved of viral mortality, elevating the ecological consequences of this complex interaction. Further results indicate that HHQ may target phytoplankton proteins involved in nucleotide biosynthesis and DNA repair, both of which are crucial targets for viral success. Our results support microbial cues as emerging players in marine ecosystems, providing a new mechanistic framework for how bacterial communication signals mediate interspecies and interkingdom behaviors.


Assuntos
Bactérias/metabolismo , Divisão Celular , Fitoplâncton/fisiologia , Percepção de Quorum , Transdução de Sinais , 4-Quinolonas/metabolismo , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Interações Microbianas , Microbiota , Fitoplâncton/genética , Proteômica
8.
Access Microbiol ; 2(4): acmi000107, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33005871

RESUMO

As the smallest and most abundant primary producer in the oceans, the cyanobacterium Prochlorococcus is of interest to diverse branches of science. For the past 30 years, research on this minimal phototroph has led to a growing understanding of biological organization across multiple scales, from the genome to the global ocean ecosystem. Progress in understanding drivers of its diversity and ecology, as well as molecular mechanisms underpinning its streamlined simplicity, has been hampered by the inability to manipulate these cells genetically. Multiple attempts have been made to develop an efficient genetic transformation method for Prochlorococcus over the years; all have been unsuccessful to date, despite some success with their close relative, Synechococcus . To avoid the pursuit of unproductive paths, we report here what has not worked in our hands, as well as our progress developing a method to screen the most efficient electroporation parameters for optimal DNA delivery into Prochlorococcus cells. We also report a novel protocol for obtaining axenic colonies and a new method for differentiating live and dead cells. The electroporation method can be used to optimize DNA delivery into any bacterium, making it a useful tool for advancing transformation systems in other genetically recalcitrant microorganisms.

9.
Microbiologyopen ; 8(5): e00705, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30311417

RESUMO

Eastern boundary upwelling systems (EBUSs) are among the most productive marine environments in the world. The Canary Current upwelling system off the coast of Mauritania and Morocco is the second most productive of the four EBUS, where nutrient-rich waters fuel perennial phytoplankton blooms, evident by high chlorophyll a concentrations off Cape Blanc, Mauritania. High primary production leads to eutrophic waters in the surface layers, whereas sinking phytoplankton debris and horizontally dispersed particles form nepheloid layers (NLs) and hypoxic waters at depth. We used Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) in combination with fatty acid (measured as methyl ester; FAME) profiles to investigate the bacterial and archaeal community composition along transects from neritic to pelagic waters within the "giant Cape Blanc filament" in two consecutive years (2010 and 2011), and to evaluate the usage of FAME data for microbial community studies. We also report the first fatty acid profile of Pelagibacterales strain HTCC7211 which was used as a reference profile for the SAR11 clade. Unexpectedly, the reference profile contained low concentrations of long chain fatty acids 18:1 cis11, 18:1 cis11 11methyl, and 19:0 cyclo11-12 fatty acids, the main compounds in other Alphaproteobacteria. Members of the free-living SAR11 clade were found at increased relative abundance in the hypoxic waters in both years. In contrast, the depth profiles of Gammaproteobacteria (including Alteromonas and Pseudoalteromonas), Bacteroidetes, Roseobacter, and Synechococcus showed high abundances of these groups in layers where particle abundance was high, suggesting that particle attachment or association is an important mechanisms of dispersal for these groups. Collectively, our results highlight the influence of NLs, horizontal particle transport, and low oxygen on the structure and dispersal of microbial communities in upwelling systems.


Assuntos
Archaea/classificação , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/isolamento & purificação , Microbiota , Água do Mar/microbiologia , Archaea/química , Archaea/genética , Bactérias/química , Bactérias/genética , Ácidos Graxos/análise , Hibridização in Situ Fluorescente , Mauritânia , Marrocos
10.
ISME J ; 13(6): 1506-1519, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30742057

RESUMO

Prochlorococcus and SAR11 are among the smallest and most abundant organisms on Earth. With a combined global population of about 2.7 × 1028 cells, they numerically dominate bacterioplankton communities in oligotrophic ocean gyres and yet they have never been grown together in vitro. Here we describe co-cultures of Prochlorococcus and SAR11 isolates representing both high- and low-light adapted clades. We examined: (1) the influence of Prochlorococcus on the growth of SAR11 and vice-versa, (2) whether Prochlorococcus can meet specific nutrient requirements of SAR11, and (3) how co-culture dynamics vary when Prochlorococcus is grown with SAR11 compared with sympatric copiotrophic bacteria. SAR11 grew 15-70% faster in co-culture with Prochlorococcus, while the growth of the latter was unaffected. When Prochlorococcus populations entered stationary phase, this commensal relationship rapidly became amensal, as SAR11 abundances decreased dramatically. In parallel experiments with copiotrophic bacteria; however, the heterotrophic partner increased in abundance as Prochlorococcus densities leveled off. The presence of Prochlorococcus was able to meet SAR11's central requirement for organic carbon, but not reduced sulfur. Prochlorococcus strain MIT9313, but not MED4, could meet the unique glycine requirement of SAR11, which could be due to the production and release of glycine betaine by MIT9313, as supported by comparative genomic evidence. Our findings also suggest, but do not confirm, that Prochlorococcus MIT9313 may compete with SAR11 for the uptake of 3-dimethylsulfoniopropionate (DMSP). To give our results an ecological context, we assessed the relative contribution of Prochlorococcus and SAR11 genome equivalents to those of identifiable bacteria and archaea in over 800 marine metagenomes. At many locations, more than half of the identifiable genome equivalents in the euphotic zone belonged to Prochlorococcus and SAR11 - highlighting the biogeochemical potential of these two groups.


Assuntos
Alphaproteobacteria/crescimento & desenvolvimento , Prochlorococcus/crescimento & desenvolvimento , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Técnicas de Cocultura , Processos Heterotróficos , Prochlorococcus/genética , Prochlorococcus/metabolismo , Água do Mar/microbiologia , Compostos de Sulfônio/metabolismo
11.
Microbiome ; 7(1): 93, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208456

RESUMO

BACKGROUND: Marine bacteria form complex relationships with eukaryotic hosts, from obligate symbioses to pathogenic interactions. These interactions can be tightly regulated by bioactive molecules, creating a complex system of chemical interactions through which these species chemically communicate thereby directly altering the host's physiology and community composition. Quorum sensing (QS) signals were first described in a marine bacterium four decades ago, and since then, we have come to discover that QS mediates processes within the marine carbon cycle, affects the health of coral reef ecosystems, and shapes microbial diversity and bacteria-eukaryotic host relationships. Yet, only recently have alkylquinolone signals been recognized for their role in cell-to-cell communication and the orchestration of virulence in biomedically relevant pathogens. The alkylquinolone, 2-heptyl-4-quinolone (HHQ), was recently found to arrest cell growth without inducing cell mortality in selected phytoplankton species at nanomolar concentrations, suggesting QS molecules like HHQ can influence algal physiology, playing pivotal roles in structuring larger ecological frameworks. RESULTS: To understand how natural communities of phytoplankton and bacteria respond to HHQ, field-based incubation experiments with ecologically relevant concentrations of HHQ were conducted over the course of a stimulated phytoplankton bloom. Bulk flow cytometry measurements indicated that, in general, exposure to HHQ caused nanoplankton and prokaryotic cell abundances to decrease. Amplicon sequencing revealed HHQ exposure altered the composition of particle-associated and free-living microbiota, favoring the relative expansion of both gamma- and alpha-proteobacteria, and a concurrent decrease in Bacteroidetes. Specifically, Pseudoalteromonas spp., known to produce HHQ, increased in relative abundance following HHQ exposure. A search of representative bacterial genomes from genera that increased in relative abundance when exposed to HHQ revealed that they all have the genetic potential to bind HHQ. CONCLUSIONS: This work demonstrates HHQ has the capacity to influence microbial community organization, suggesting alkylquinolones have functions beyond bacterial communication and are pivotal in driving microbial community structure and phytoplankton growth. Knowledge of how bacterial signals alter marine communities will serve to deepen our understanding of the impact these chemical interactions have on a global scale.


Assuntos
4-Quinolonas/farmacologia , Bactérias/metabolismo , Microbiota , Fitoplâncton/efeitos dos fármacos , Percepção de Quorum , Transdução de Sinais , Bactérias/classificação , Proteínas de Bactérias/genética , Clorofila/análise , Recifes de Corais , Oceanos e Mares , Fitoplâncton/microbiologia , Água do Mar/microbiologia
13.
Sci Data ; 5: 180154, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30179231

RESUMO

Prochlorococcus and Synechococcus are the dominant primary producers in marine ecosystems and perform a significant fraction of ocean carbon fixation. These cyanobacteria interact with a diverse microbial community that coexists with them. Comparative genomics of cultivated isolates has helped address questions regarding patterns of evolution and diversity among microbes, but the fraction that can be cultivated is miniscule compared to the diversity in the wild. To further probe the diversity of these groups and extend the utility of reference sequence databases, we report a data set of single cell genomes for 489 Prochlorococcus, 50 Synechococcus, 9 extracellular virus particles, and 190 additional microorganisms from a diverse range of bacterial, archaeal, and viral groups. Many of these uncultivated single cell genomes are derived from samples obtained on GEOTRACES cruises and at well-studied oceanographic stations, each with extensive suites of physical, chemical, and biological measurements. The genomic data reported here greatly increases the number of available Prochlorococcus genomes and will facilitate studies on evolutionary biology, microbial ecology, and biological oceanography.


Assuntos
Archaea/genética , Genoma Arqueal , Genoma Bacteriano , Genoma Viral , Prochlorococcus/genética , Synechococcus/genética , Vírus/genética , Água do Mar , Análise de Célula Única , Microbiologia da Água
14.
ISME J ; 11(3): 825-828, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27922599

RESUMO

Microbes are an essential component of marine food webs and biogeochemical cycles, and therefore precise estimates of their biomass are of significant value. Here, we measured single-cell biomass distributions of isolates from several numerically abundant marine bacterial groups, including Pelagibacter (SAR11), Prochlorococcus and Vibrio using a microfluidic mass sensor known as a suspended microchannel resonator (SMR). We show that the SMR can provide biomass (dry mass) measurements for cells spanning more than two orders of magnitude and that these estimates are consistent with other independent measures. We find that Pelagibacterales strain HTCC1062 has a median biomass of 11.9±0.7 fg per cell, which is five- to twelve-fold smaller than the median Prochlorococcus cell's biomass (depending upon strain) and nearly 100-fold lower than that of rapidly growing V. splendidus strain 13B01. Knowing the biomass contributions from various taxonomic groups will provide more precise estimates of total marine biomass, aiding models of nutrient flux in the ocean.


Assuntos
Bactérias/classificação , Biomassa , Técnicas Analíticas Microfluídicas , Cadeia Alimentar , Modelos Biológicos , Água do Mar/microbiologia , Microbiologia da Água
15.
mBio ; 7(6)2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27879330

RESUMO

The members of the OM43 clade of Betaproteobacteria are abundant coastal methylotrophs with a range of carbon-utilizing capabilities. However, their underlying transcriptional and metabolic responses to shifting conditions or different carbon substrates remain poorly understood. We examined the transcriptional dynamics of OM43 isolate NB0046 subjected to various inorganic nutrient, vitamin, and carbon substrate regimes over different growth phases to (i) develop a quantitative model of its mRNA content; (ii) identify transcriptional markers of physiological activity, nutritional state, and carbon and energy utilization; and (iii) identify pathways involved in methanol or naturally occurring dissolved organic matter (DOM) metabolism. Quantitative transcriptomics, achieved through addition of internal RNA standards, allowed for analyses on a transcripts-per-cell scale. This streamlined bacterium exhibited substantial shifts in total mRNA content (ranging from 1,800 to 17 transcripts cell-1 in the exponential and deep stationary phases, respectively) and gene-specific transcript abundances (>1,000-fold increases in some cases), depending on the growth phase and nutrient conditions. Carbon metabolism genes exhibited substantial dynamics, including those for ribulose monophosphate, tricarboxylic acid (TCA), and proteorhodopsin, as well as methanol dehydrogenase (xoxF), which, while always the most abundant transcript, increased from 5 to 120 transcripts cell-1 when cultures were nutrient and vitamin amended. In the DOM treatment, upregulation of TCA cycle, methylcitrate cycle, vitamin, and organic phosphorus genes suggested a metabolic route for this complex mixture of carbon substrates. The genome-wide inventory of transcript abundances produced here provides insight into a streamlined marine bacterium's regulation of carbon metabolism and energy flow, providing benchmarks for evaluating the activity of OM43 populations in situ IMPORTANCE: Bacteria exert a substantial influence on marine organic matter flux, yet the carbon components targeted by specific bacterial groups, as well as how those groups' metabolic activities change under different conditions, are not well understood. Gene expression studies of model organisms can identify these responses under defined conditions, which can then be compared to environmental transcriptomes to elucidate in situ activities. This integration, however, is limited by the data's relative nature. Here, we report the fully quantitative transcriptome of a marine bacterium, providing a genome-wide survey of cellular transcript abundances and how they change with different states of growth, nutrient conditions, and carbon substrates. The results revealed the dynamic metabolic strategies this methylotroph has for processing both simple one-carbon compounds and the complex multicarbon substrates of naturally derived marine organic matter and provide baseline quantitative data for identifying their in situ activities and impact on the marine carbon cycle.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/crescimento & desenvolvimento , Betaproteobacteria/efeitos dos fármacos , Betaproteobacteria/crescimento & desenvolvimento , Carbono/metabolismo , Perfilação da Expressão Gênica , Compostos Orgânicos/metabolismo , Redes e Vias Metabólicas
16.
Front Microbiol ; 5: 111, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24748874

RESUMO

Production of dissolved organic matter (DOM) by marine phytoplankton supplies the majority of organic substrate consumed by heterotrophic bacterioplankton in the sea. This production and subsequent consumption converts a vast quantity of carbon, nitrogen, and phosphorus between organic and inorganic forms, directly impacting global cycles of these biologically important elements. Details regarding the chemical composition of DOM produced by marine phytoplankton are sparse, and while often assumed, it is not currently known if phylogenetically distinct groups of marine phytoplankton release characteristic suites of DOM. To investigate the relationship between specific phytoplankton groups and the DOM they release, hydrophobic phytoplankton-derived dissolved organic matter (DOMP) from eight axenic strains was analyzed using high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS). Identification of DOM features derived from Prochlorococcus, Synechococcus, Thalassiosira, and Phaeodactylum revealed DOMP to be complex and highly strain dependent. Connections between DOMP features and the phylogenetic relatedness of these strains were identified on multiple levels of phylogenetic distance, suggesting that marine phytoplankton produce DOM that in part reflects its phylogenetic origin. Chemical information regarding the size and polarity ranges of features from defined biological sources was also obtained. Our findings reveal DOMP composition to be partially conserved among related phytoplankton species, and implicate marine DOM as a potential factor influencing microbial diversity in the sea by acting as a link between autotrophic and heterotrophic microbial community structures.

17.
Science ; 316(5827): 1017-21, 2007 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-17510362

RESUMO

Mesoscale eddies may play a critical role in ocean biogeochemistry by increasing nutrient supply, primary production, and efficiency of the biological pump, that is, the ratio of carbon export to primary production in otherwise nutrient-deficient waters. We examined a diatom bloom within a cold-core cyclonic eddy off Hawaii. Eddy primary production, community biomass, and size composition were markedly enhanced but had little effect on the carbon export ratio. Instead, the system functioned as a selective silica pump. Strong trophic coupling and inefficient organic export may be general characteristics of community perturbation responses in the warm waters of the Pacific Ocean.


Assuntos
Diatomáceas/crescimento & desenvolvimento , Ecossistema , Água do Mar , Dióxido de Silício/análise , Movimentos da Água , Animais , Bactérias/crescimento & desenvolvimento , Biomassa , Carbono/análise , Clorofila/análise , Diatomáceas/fisiologia , Havaí , Nitratos , Nitritos/análise , Oceano Pacífico , Fotossíntese , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/fisiologia , Água do Mar/química , Ácido Silícico/análise , Temperatura , Zooplâncton/crescimento & desenvolvimento , Zooplâncton/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA