Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(51): e2122354119, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36508667

RESUMO

Islands support unique plants, animals, and human societies found nowhere else on the Earth. Local and global stressors threaten the persistence of island ecosystems, with invasive species being among the most damaging, yet solvable, stressors. While the threat of invasive terrestrial mammals on island flora and fauna is well recognized, recent studies have begun to illustrate their extended and destructive impacts on adjacent marine environments. Eradication of invasive mammals and restoration of native biota are promising tools to address both island and ocean management goals. The magnitude of the marine benefits of island restoration, however, is unlikely to be consistent across the globe. We propose a list of six environmental characteristics most likely to affect the strength of land-sea linkages: precipitation, elevation, vegetation cover, soil hydrology, oceanographic productivity, and wave energy. Global databases allow for the calculation of comparable metrics describing each environmental character across islands. Such metrics can be used today to evaluate relative potential for coupled land-sea conservation efforts and, with sustained investment in monitoring on land and sea, can be used in the future to refine science-based planning tools for integrated land-sea management. As conservation practitioners work to address the effects of climate change, ocean stressors, and biodiversity crises, it is essential that we maximize returns from our management investments. Linking efforts on land, including eradication of island invasive mammals, with marine restoration and protection should offer multiplied benefits to achieve concurrent global conservation goals.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Humanos , Biodiversidade , Espécies Introduzidas , Mudança Climática , Mamíferos
2.
Ecol Appl ; 26(3): 784-95, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27411250

RESUMO

Understanding reproduction and mating systems is important for managers tasked with conserving vulnerable species. Genetic tools allow biologists to investigate reproduction and mating systems with high resolution and are particularly useful for species that are otherwise difficult to study in their natural environments. We conducted parentage analyses using 19 nuclear DNA microsatellite loci to assess the influence of population density, genetic diversity, and ancestry on reproduction, and to examine the mating system of pygmy rabbits (Brachylagus idahoensis) bred in large naturalized enclosures for the reintroduction and recovery of the endangered distinct population in central Washington, USA. Reproductive output for females and males decreased as population density and individual homozygosity increased. We identified an interaction indicating that male reproductive output decreased as genetic diversity declined at high population densities, but there was no effect at low densities. Males with high amounts (> 50%) of Washington ancestry had higher reproductive output than the other ancestry groups, while reproductive output was decreased for males with high northern Utah/Wyoming ancestry and females with high Oregon/Nevada ancestry. Females and males bred with an average of 3.8 and 3.6 mates per year, respectively, and we found no evidence of positive or negative assortative mating with regards to ancestry. Multiple paternity was confirmed in 81% of litters, and we report the first documented cases of juvenile breeding by pygmy rabbits. This study demonstrates how variation in population density, genetic diversity, and ancestry impact fitness for an endangered species being bred for conservation. Our results advance understanding of basic life history characteristics for a cryptic species that is difficult to study in the wild and provide lessons for managing populations of vulnerable species in captive and free-ranging populations.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Coelhos/genética , Coelhos/fisiologia , Reprodução/genética , Reprodução/fisiologia , Animais , Ecossistema , Feminino , Genótipo , Masculino , Repetições de Microssatélites , Densidade Demográfica , Estados Unidos
3.
mSphere ; 1(4)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27504499

RESUMO

White-nose syndrome (WNS) is an emerging fungal disease of bats caused by Pseudogymnoascus destructans. Since it was first detected near Albany, NY, in 2006, the fungus has spread across eastern North America, killing unprecedented numbers of hibernating bats. The devastating impacts of WNS on Nearctic bat species are attributed to the likely introduction of P. destructans from Eurasia to naive host populations in eastern North America. Since 2006, the disease has spread in a gradual wavelike pattern consistent with introduction of the pathogen at a single location. Here, we describe the first detection of P. destructans in western North America in a little brown bat (Myotis lucifugus) from near Seattle, WA, far from the previously recognized geographic distribution of the fungus. Whole-genome sequencing and phylogenetic analyses indicated that the isolate of P. destructans from Washington grouped with other isolates of a presumed clonal lineage from the eastern United States. Thus, the occurrence of P. destructans in Washington does not likely represent a novel introduction of the fungus from Eurasia, and the lack of intensive surveillance in the western United States makes it difficult to interpret whether the occurrence of P. destructans in the Pacific Northwest is disjunct from that in eastern North America. Although there is uncertainty surrounding the impacts of WNS in the Pacific Northwest, the presence of the pathogen in western North America could have major consequences for bat conservation. IMPORTANCE White-nose syndrome (WNS) represents one of the most consequential wildlife diseases of modern times. Since it was first documented in New York in 2006, the disease has killed millions of bats and threatens several formerly abundant species with extirpation or extinction. The spread of WNS in eastern North America has been relatively gradual, inducing optimism that disease mitigation strategies could be established in time to conserve bats susceptible to WNS in western North America. The recent detection of the fungus that causes WNS in the Pacific Northwest, far from its previous known distribution, increases the urgency for understanding the long-term impacts of this disease and for developing strategies to conserve imperiled bat species.

4.
Mol Ecol Resour ; 13(4): 654-62, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23590236

RESUMO

Noninvasive genetic sampling of faecal pellets can be a valuable method for monitoring rare and cryptic wildlife populations, like the pygmy rabbit (Brachylagus idahoensis). To investigate this method's efficiency for pygmy rabbit monitoring, we evaluated the effect of sample age on DNA degradation in faecal pellets under summer field conditions. We placed 275 samples from known individuals in natural field conditions for 1-60 days and assessed DNA quality by amplifying a 294-base-pair (bp) mitochondrial DNA (mtDNA) locus and five nuclear DNA (nDNA) microsatellite loci (111-221 bp). DNA degradation was influenced by sample age, DNA type, locus length and rabbit sex. Both mtDNA and nDNA exhibited high PCR success rates (94.4%) in samples <1 day old. Success rates for microsatellite loci declined rapidly from 80.0% to 42.7% between days 5 and 7, likely due to increased environmental temperature. Success rates for mtDNA amplification remained higher than nDNA over time, with moderate success (66.7%) at 21 days. Allelic dropout rates were relatively high (17.6% at <1 day) and increased to 100% at 60 days. False allele rates ranged from 0 to 30.0% and increased gradually over time. We recommend collecting samples as fresh as possible for individual identification during summer field conditions. Our study suggests that this method can be useful for future monitoring efforts, including occupancy surveys, individual identification, population estimation, parentage analysis and monitoring of genetic diversity both of a re-introduced population in central Washington and across their range.


Assuntos
DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Fezes/química , Manejo de Espécimes/métodos , Animais , Lagomorpha , Repetições de Microssatélites , Reação em Cadeia da Polimerase , Temperatura , Fatores de Tempo
5.
PLoS One ; 7(5): e37181, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615933

RESUMO

The conservation of many fragmented and small populations of endangered African wild dogs (Lycaon pictus) relies on understanding the natural processes affecting genetic diversity, demographics, and future viability. We used extensive behavioural, life-history, and genetic data from reintroduced African wild dogs in South Africa to (1) test for inbreeding avoidance via mate selection and (2) model the potential consequences of avoidance on population persistence. Results suggested that wild dogs avoided mating with kin. Inbreeding was rare in natal packs, after reproductive vacancies, and between sibling cohorts (observed on 0.8%, 12.5%, and 3.8% of occasions, respectively). Only one of the six (16.7%) breeding pairs confirmed as third-order (or closer) kin consisted of animals that were familiar with each other, while no other paired individuals had any prior association. Computer-simulated populations allowed to experience inbreeding had only a 1.6% probability of extinction within 100 years, whereas all populations avoiding incestuous matings became extinct due to the absence of unrelated mates. Populations that avoided mating with first-order relatives became extinct after 63 years compared with persistence of 37 and 19 years for those also prevented from second-order and third-order matings, respectively. Although stronger inbreeding avoidance maintains significantly more genetic variation, our results demonstrate the potentially severe demographic impacts of reduced numbers of suitable mates on the future viability of small, isolated wild dog populations. The rapid rate of population decline suggests that extinction may occur before inbreeding depression is observed.


Assuntos
Canidae/genética , Endogamia , Comportamento Sexual Animal , Animais , Simulação por Computador , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Feminino , Variação Genética , Masculino , Reprodução/genética , Predomínio Social , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA