Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Res ; 67(17): 8180-7, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17804731

RESUMO

Development and progression of cancer is accompanied by marked changes in the expression and activity of enzymes involved in the cellular homeostasis of fatty acids. One class of enzymes that play a particularly important role in this process are the acetyl-CoA carboxylases (ACC). ACCs produce malonyl-CoA, an intermediate metabolite that functions as substrate for fatty acid synthesis and as negative regulator of fatty acid oxidation. Here, using the potent ACC inhibitor soraphen A, a macrocyclic polyketide from myxobacteria, we show that ACC activity in cancer cells is essential for proliferation and survival. Even at nanomolar concentrations, soraphen A can block fatty acid synthesis and stimulate fatty acid oxidation in LNCaP and PC-3M prostate cancer cells. As a result, the phospholipid content of cancer cells decreased, and cells stopped proliferating and ultimately died. LNCaP cells predominantly died through apoptosis, whereas PC-3M cells showed signs of autophagy. Supplementation of the culture medium with exogenous palmitic acid completely abolished the effects of soraphen A and rescued the cells from cell death. Interestingly, when added to cultures of premalignant BPH-1 cells, soraphen A only slightly affected cell proliferation and did not induce cell death. Together, these findings indicate that cancer cells have become dependent on ACC activity to provide the cell with a sufficient supply of fatty acids to permit proliferation and survival, introducing the concept of using small-molecule ACC inhibitors as therapeutic agents for cancer.


Assuntos
Acetil-CoA Carboxilase/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Macrolídeos/farmacologia , Neoplasias/patologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Ácidos Graxos/biossíntese , Ácidos Graxos/metabolismo , Humanos , Masculino , Ácido Palmítico/farmacologia , Fosfolipídeos/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Células Tumorais Cultivadas
2.
Cancer Res ; 65(6): 2441-8, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15781660

RESUMO

Aggressive cancer cells typically show a high rate of energy-consuming anabolic processes driving the synthesis of lipids, proteins, and DNA. Here, we took advantage of the ability of the cell-permeable nucleoside 5-aminoimidazole-4-carboxamide (AICA) riboside to increase the intracellular levels of AICA ribotide, an AMP analogue, mimicking a low energy status of the cell. Treatment of cancer cells with AICA riboside impeded lipogenesis, decreased protein translation, and blocked DNA synthesis. Cells treated with AICA riboside stopped proliferating and lost their invasive properties and their ability to form colonies. When administered in vivo, AICA riboside attenuated the growth of MDA-MB-231 tumors in nude mice. These findings point toward a central tie between energy, anabolism, and cancer and suggest that the cellular energy sensing machinery in cancer cells is an exploitable target for cancer prevention and/or therapy.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Próstata/tratamento farmacológico , Ribonucleosídeos/farmacologia , Monofosfato de Adenosina/metabolismo , Adenilato Quinase/metabolismo , Aminoimidazol Carboxamida/metabolismo , Animais , Materiais Biomiméticos/metabolismo , Materiais Biomiméticos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Metabolismo Energético , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ribonucleosídeos/metabolismo , Ribonucleotídeos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Mol Cancer Ther ; 5(9): 2211-7, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16985054

RESUMO

Because of its ability to mimic a low energy status of the cell, the cell-permeable nucleoside 5-aminoimidazole-4-carboxamide (AICA) riboside was proposed as an antineoplastic agent switching off major energy-consuming processes associated with the malignant phenotype (lipid production, DNA synthesis, cell proliferation, cell migration, etc.). Key to the antineoplastic action of AICA riboside is its conversion to ZMP, an AMP mimetic that at high concentrations activates the AMP-activated protein kinase (AMPK). Here, in an attempt to increase the efficacy of AICA riboside, we pretreated cancer cells with methotrexate, an antimetabolite blocking the metabolism of ZMP. Methotrexate enhanced the AICA riboside-induced accumulation of ZMP and led to a decrease in the levels of ATP, which functions as an intrasteric inhibitor of AMPK. Consequently, methotrexate markedly sensitized AMPK for activation by AICA riboside and potentiated the inhibitory effects of AICA riboside on tumor-associated processes. As cotreatment elicited antiproliferative effects already at concentrations of compounds that were only marginally effective when used alone, our findings on the cooperation between methotrexate and AICA riboside provide new opportunities both for the application of classic antimetabolic chemotherapeutics, such as methotrexate, and for the exploitation of the energy-sensing machinery as a target for cancer intervention.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Neoplasias da Mama/tratamento farmacológico , Carcinoma de Células Escamosas/tratamento farmacológico , Metotrexato/farmacologia , Ribonucleosídeos/farmacologia , Proteínas Quinases Ativadas por AMP , Trifosfato de Adenosina/metabolismo , Aminoimidazol Carboxamida/antagonistas & inibidores , Aminoimidazol Carboxamida/metabolismo , Aminoimidazol Carboxamida/farmacocinética , Aminoimidazol Carboxamida/farmacologia , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , DNA de Neoplasias/antagonistas & inibidores , DNA de Neoplasias/biossíntese , Sinergismo Farmacológico , Ativação Enzimática/efeitos dos fármacos , Humanos , Lipídeos/biossíntese , Complexos Multienzimáticos/metabolismo , Nucleotídeo Desaminases/antagonistas & inibidores , Nucleotídeo Desaminases/genética , Nucleotídeo Desaminases/metabolismo , Fosforribosilaminoimidazolcarboxamida Formiltransferase/antagonistas & inibidores , Fosforribosilaminoimidazolcarboxamida Formiltransferase/genética , Fosforribosilaminoimidazolcarboxamida Formiltransferase/metabolismo , Fosforribosilglicinamido Formiltransferase/antagonistas & inibidores , Fosforribosilglicinamido Formiltransferase/genética , Fosforribosilglicinamido Formiltransferase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Purinas/antagonistas & inibidores , Purinas/biossíntese , Interferência de RNA , Ribonucleosídeos/farmacocinética , Ribonucleotídeos/antagonistas & inibidores , Ribonucleotídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA