Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurobiol Dis ; 136: 104719, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31862541

RESUMO

Patients with Alzheimer's disease (AD) experience seizures at higher rates than the general population of that age, suggesting an underexplored role of hyperexcitability in AD. Genetic variants in presenilin (PSEN) 1 and 2 genes lead to autosomal dominant early-onset AD (ADAD); patients with PSEN gene variants also report seizures. Pharmacological control of seizures in AD may be disease-modifying. Preclinical efficacy of FDA-approved antiseizure drugs (ASDs) is well defined in young adult rodents; however, the efficacy of ASDs in aged rodents with chronic seizures is less clear. The mechanism by which ADAD genes lead to AD remains unclear, and even less studied is the pathogenesis of epilepsy in AD. PSEN variants generally all result in a biochemical loss of function (De Strooper, 2007). We herein determined whether well-established models of acute and chronic seizure could be used to explore the relationship between AD genes and seizures through investigating whether loss of normal PSEN2 function age-dependently influenced susceptibility to seizures and/or corneal kindling acquisition. PSEN2 knockout (KO) and age-matched wild-type (WT) mice were screened from 2- to 10-months-old to establish age-dependent focal seizure threshold. Additionally, PSEN2 KO and WT mice aged 2- and 8-months-old underwent corneal kindling such that mice were aged 3- and 9-months old at the beginning of ASD efficacy testing. We then defined the dose-dependent efficacy of mechanistically distinct ASDs on kindled seizures of young versus aged mice to better understand the applicability of corneal kindling to real-world use for geriatric patients. PSEN2 KO mice demonstrated early-life reductions in seizure threshold. However, kindling acquisition was delayed in 2-month-old PSEN2 KO versus WT mice. Young male WT mice took 24.3 ± 1.3 (S.E.M.) stimulations to achieve kindling criterion, whereas age-matched PSEN2 KO male mice took 41.2 ± 1.1 stimulations (p < .0001). The rate of kindling acquisition of 8-month-old mice was no longer different from WT. This study demonstrates that loss of normal PSEN2 function is associated with age-dependent changes in the in vivo susceptibility to acute seizures and kindling. Loss of normal PSEN2 function may be an underexplored molecular contributor to seizures. The use of validated models of chronic seizures in aged rodents may uncover age-related changes in susceptibility to epileptogenesis and/or ASD efficacy in mice with AD-associated genotypes, which may benefit the management of seizures in AD.


Assuntos
Predisposição Genética para Doença , Excitação Neurológica/metabolismo , Presenilina-2/deficiência , Convulsões/metabolismo , Animais , Feminino , Predisposição Genética para Doença/genética , Excitação Neurológica/genética , Masculino , Camundongos , Camundongos Knockout , Presenilina-2/genética , Convulsões/genética
2.
J Pharmacol Exp Ther ; 371(1): 25-35, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31375638

RESUMO

Methylcellulose (MC; 0.5% concentration) is commonly used when evaluating investigational agents for efficacy in preclinical models of disease. When administered by the oral (PO) route, MC is considered a Food and Drug Administration "generally recognized as safe" compound. Yet, there is limited data pertaining to the tolerability and impact on model fidelity of repeated intraperitoneal administration of 0.5% MC. Chronic administration of high-concentration MC (2%-2.5%) has been used to induce anemia, splenomegaly, and lesions in multiple organ systems in several preclinical species. Histopathological findings from a diagnostic pathologic analysis of a single mouse from our laboratory with experimentally induced chronic seizures that had received repeated intraperitoneal administration of antiseizure drugs delivered in MC revealed similar widespread lesions. This study thus tested the hypothesis that chronic administration of intraperitoneal, but not PO, MC incites histologic lesions without effects on preclinical phenotype. Male CF-1 mice (n = 2-14/group) were randomized to receive either 6 weeks of twice weekly 0.5% MC or saline (intraperitoneal or PO) following induction of chronic seizures. Histology of a subset of mice revealed lesions in kidney, liver, mediastinal lymph nodes, mesentery, aorta, and choroid plexus only in intraperitoneal MC-treated mice (n = 7/7). Kindled mice that received MC PO (n = 5) or saline (intraperitoneal n = 6, PO n = 3) had no lesions. There were no effects of intraperitoneal MC treatment on body weight, appearance, seizure stability, or behavior. Nonetheless, our findings suggest that repeated intraperitoneal, but not PO, MC elicits systemic organ damage without impacting the model phenotype, which may confound interpretation of investigational drug-induced histologic lesions. SIGNIFICANCE STATEMENT: Methylcellulose (0.5% concentration) is commonly used when evaluating investigational agents for efficacy in preclinical models of disease. Herein, we demonstrate that repeated administration of 0.5% methylcellulose by the intraperitoneal, but not oral, route results in systemic inflammation and presence of foam-laden macrophages but does not impact the behavioral phenotype of a rodent model of neurological disease.


Assuntos
Injeções Intraperitoneais/efeitos adversos , Metilcelulose/efeitos adversos , Fenótipo , Convulsões/induzido quimicamente , Animais , Aorta/efeitos dos fármacos , Plexo Corióideo/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/normas , Feminino , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Linfonodos/efeitos dos fármacos , Masculino , Metilcelulose/administração & dosagem , Metilcelulose/toxicidade , Camundongos , Camundongos Endogâmicos C57BL
3.
Exp Neurol ; 361: 114321, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36634751

RESUMO

Patients with early-onset Alzheimer's disease (EOAD) are at elevated risk for seizures, including patients with presenilin 2 (PSEN2) variants. Like people with epilepsy, uncontrolled seizures may worsen cognitive function in AD. While the relationship between seizures and amyloid beta accumulation has been more thoroughly investigated, the role of other drivers of seizure susceptibility in EOAD remain relatively understudied. We therefore sought to define the impact of loss of normal PSEN2 function and chronic seizures on cognitive function in the aged brain. Male and female PSEN2 KO and age- and sex-matched wild-type (WT) mice were sham or corneal kindled beginning at 6-months-old. Kindled and sham-kindled mice were then challenged up to 6 weeks later in a battery of cognitive tests: non-habituated open field (OF), T-maze spontaneous alternation (TM), and Barnes maze (BM), followed by immunohistochemistry for markers of neuroinflammation and neuroplasticity. PSEN2 KO mice required significantly more stimulations to kindle (males: p < 0.02; females: p < 0.02) versus WT. Across a range of behavioral tests, the cognitive performance of kindled female PSEN2 KO mice was most significantly impaired versus age-matched WT females. Male BM performance was generally worsened by seizures (p = 0.038), but loss of PSEN2 function did not itself worsen cognitive performance. Conversely, kindled PSEN2 KO females made the most BM errors (p = 0.007). Chronic seizures also significantly altered expression of hippocampal neuroinflammation and neuroplasticity markers in a sex-specific manner. Chronic seizures may thus significantly worsen hippocampus-dependent cognitive deficits in aged female, but not male, PSEN2 KO mice. Our work suggests that untreated focal seizures may worsen cognitive burden with loss of normal PSEN2 function in a sex-related manner.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Masculino , Camundongos , Feminino , Animais , Presenilina-2/genética , Doenças Neuroinflamatórias , Convulsões , Cognição , Presenilina-1
4.
Front Cell Neurosci ; 15: 751762, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733140

RESUMO

Dravet Syndrome (DS) is a genetic, infantile-onset epilepsy with refractory seizures and severe cognitive impairment. While network level pathophysiology is poorly understood, work in genetic mouse models of DS reveals selective reduction of inhibitory interneuron excitability, a likely mechanism of seizures and comorbidities. Consistent with the critical role of interneurons in timing and recruitment of network activity, hippocampal sharp wave ripples (SPW-R)-interneuron dependent compound brain rhythms essential for spatial learning and memory-are less frequent and ripple frequency is slower in DS mice, both likely to impair cognitive performance. Febrile seizures are characteristic of DS, reflecting a temperature-dependent shift in excitation-inhibition balance. DS interneurons are sensitive to depolarization block and may fall silent with increased excitation precipitating epileptic transformation of ripples. To determine the temperature dependence of SWP-R features and relationship of SPW-R to hippocampal interictal activity, we recorded hippocampal local field potentials in a DS mouse model and wildtype littermate controls while increasing core body temperature. In both genotypes, temperature elevation speeds ripple frequency, although DS ripples remain consistently slower. The rate of SPW-R also increases in both genotypes but subsequently falls in DS mice as interictal epileptic activity simultaneously increases preceding a thermally-evoked seizure. Epileptic events occur intermixed with SPW-R, some during SPW-R burst complexes, and transiently suppress SPW-R occurrence suggesting shared network elements. Together these data demonstrate a temperature dependence of SPW-R rate and ripple frequency and suggest a pathophysiologic mechanism by which elevated temperature transforms a normal brain rhythm into epileptic event.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA