Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Med Genet ; 42(7): 577-82, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15994879

RESUMO

Patients with hereditary haemorrhagic telangiectasia (HHT, or Osler-Weber-Rendu syndrome) have variable presentation patterns and a high risk of preventable complications. Diagnostic tests for mutations in endoglin (HHT type 1) and ALK-1 (HHT type 2) are available. Some HHT patients are now known to have HHT-juvenile polyposis overlap syndrome due to Smad4 mutations. Families were ascertained following the presentation of probands for embolization of pulmonary arteriovenous malformations. Genome-wide linkage studies using over 700 polymorphic markers, and sequencing of candidate genes, were performed. In a previously described HHT family unlinked to endoglin or ALK-1, linkage to Smad4 was excluded, and no mutations were identified in the endoglin, ALK-1, or Smad4 genes. Two point LOD scores and recombination mapping identified a 5.4 cM HHT3 disease gene interval on chromosome 5 in which a single haplotype was inherited by all affected members of the pedigree. The remainder of the genome was excluded to a 2-5 cM resolution. We are currently studying a further family potentially linked to HHT3. We conclude that classical HHT with pulmonary involvement can result from mutations in an unidentified gene on chromosome 5. Identification of HHT3 should further illuminate HHT pathogenic mechanisms in which aberrant transforming growth factor (TGF)-beta signalling is implicated.


Assuntos
Mapeamento Cromossômico , Cromossomos Humanos Par 5/genética , Ligação Genética , Telangiectasia Hemorrágica Hereditária/genética , Análise Mutacional de DNA , Feminino , Frequência do Gene , Haplótipos , Humanos , Escore Lod , Masculino , Linhagem
2.
Mol Syndromol ; 4(4): 184-96, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23801935

RESUMO

Hereditary haemorrhagic telangiectasia (HHT) is a disease characterised by abnormal vascular structures, and most commonly caused by mutations in ENG, ACVRL1 or SMAD4 encoding endothelial cell-expressed proteins involved in TGF-ß superfamily signalling. The majority of mutations reported on the HHT mutation database are predicted to lead to stop codons, either due to frameshifts or direct nonsense substitutions. The proportion is higher for ENG (67%) and SMAD4 (65%) than for ACVRL1 (42%), p < 0.0001. Here, by focussing on ENG, we report why conventional views of these mutations may need to be revised. Of the 111 stop codon-generating ENG mutations, on ExPASy translation, all except one were premature termination codons (PTCs), sited at least 50-55 bp upstream of the final exon-exon boundary of the main endoglin isoform, L-endoglin. This strongly suggests that the mutated RNA species will undergo nonsense-mediated decay. We provide new in vitro expression data to support dominant negative activity of stable truncated endoglin proteins but suggest these will not generate HHT: the single natural stop codon mutation in L-endoglin (sited within 50-55 nucleotides of the final exon-exon boundary) is unlikely to generate functional protein since it replaces the entire transmembrane domain, as would 8 further natural stop codon mutations, if the minor S-endoglin isoform were implicated in HHT pathogenesis. Finally, next-generation RNA sequencing data of 7 different RNA libraries from primary human endothelial cells demonstrate that multiple intronic regions of ENG are transcribed. The potential consequences of heterozygous deletions or duplications of such regions are discussed. These data support the haploinsufficiency model for HHT pathogenesis, explain why final exon mutations have not been detected to date in HHT, emphasise the potential need for functional examination of non-PTC-generating mutations, and lead to proposals for an alternate stratification system of mutational types for HHT genotype-phenotype correlations.

3.
Postgrad Med J ; 79(927): 18-24, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12566546

RESUMO

Hereditary haemorrhagic telangiectasia (HHT) affects one in 5-8000, and no longer can be viewed as solely causing anaemia (due to nasal and gastrointestinal bleeding) and characteristic mucocutaneous telangiectasia. Arteriovenous malformations commonly occur, and in the pulmonary and cerebral circulations demand knowledge of risks and benefits of asymptomatic screening and treatment. HHT is inherited as an autosomal dominant trait and there is no age cut off when apparently unaffected offspring of an individual with HHT can be told they are unaffected. This review focuses on the evolving evidence base for HHT management, issues regarding pregnancy and prothrombotic treatments, and discusses the molecular and cellular changes that underlie this disease.


Assuntos
Telangiectasia Hemorrágica Hereditária/diagnóstico , Malformações Arteriovenosas/etiologia , Epistaxe/etiologia , Feminino , Hemorragia Gastrointestinal/etiologia , Humanos , Gravidez , Complicações Cardiovasculares na Gravidez/terapia , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA