Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(17)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32846961

RESUMO

Ocean latent heat flux (LHF) is an essential variable for air-sea interactions, which establishes the link between energy balance, water and carbon cycle. The low-latitude ocean is the main heat source of the global ocean and has a great influence on global climate change and energy transmission. Thus, an accuracy estimation of high-resolution ocean LHF over low-latitude area is vital to the understanding of energy and water cycle, and it remains a challenge. To reduce the uncertainties of individual LHF products over low-latitude areas, four machine learning (ML) methods (Artificial Neutral Network (ANN), Random forest (RF), Bayesian Ridge regression and Random Sample Consensus (RANSAC) regression) were applied to estimate low-latitude monthly ocean LHF by using two satellite products (JOFURO-3 and GSSTF-3) and two reanalysis products (MERRA-2 and ERA-I). We validated the estimated ocean LHF using 115 widely distributed buoy sites from three buoy site arrays (TAO, PIRATA and RAMA). The validation results demonstrate that the performance of LHF estimations derived from the ML methods (including ANN, RF, BR and RANSAC) were significantly better than individual LHF products, indicated by R2 increasing by 3.7-46.4%. Among them, the LHF estimation using the ANN method increased the R2 of the four-individual ocean LHF products (ranging from 0.56 to 0.79) to 0.88 and decreased the RMSE (ranging from 19.1 to 37.5) to 11 W m-2. Compared to three other ML methods (RF, BR and RANSAC), ANN method exhibited the best performance according to the validation results. The results of relative uncertainty analysis using the triangle cornered hat (TCH) method show that the ensemble LHF product using ML methods has lower relative uncertainty than individual LHF product in most area. The ANN was employed to implement the mapping of annual average ocean LHF over low-latitude at a spatial resolution of 0.25° during 2003-2007. The ocean LHF fusion products estimated from ANN methods were 10-30 W m-2 lower than those of the four original ocean products (MERRA-2, JOFURO-3, ERA-I and GSSTF-3) and were more similar to observations.

2.
Sensors (Basel) ; 20(10)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429110

RESUMO

Reliable estimates of terrestrial latent heat flux (LE) at high spatial and temporal resolutions are of vital importance for energy balance and water resource management. However, currently available LE products derived from satellite data generally have high revisit frequency or fine spatial resolution. In this study, we explored the feasibility of the high spatiotemporal resolution LE fusion framework to take advantage of the Moderate Resolution Imaging Spectroradiometer (MODIS) and Chinese GaoFen-1 Wide Field View (GF-1 WFV) data. In particular, three-fold fusion schemes based on Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) were employed, including fusion of surface reflectance (Scheme 1), vegetation indices (Scheme 2) and high order LE products (Scheme 3). Our results showed that the fusion of vegetation indices and further computing LE (Scheme 2) achieved better accuracy and captured more detailed information of terrestrial LE, where the determination coefficient (R2) varies from 0.86 to 0.98, the root-mean-square error (RMSE) ranges from 1.25 to 9.77 W/m2 and the relative RSME (rRMSE) varies from 2% to 23%. The time series of merged LE in 2017 using the optimal Scheme 2 also showed a relatively good agreement with eddy covariance (EC) measurements and MODIS LE products. The fusion approach provides spatiotemporal continuous LE estimates and also reduces the uncertainties in LE estimation, with an increment in R2 by 0.06 and a decrease in RMSE by 23.4% on average. The proposed high spatiotemporal resolution LE estimation framework using multi-source data showed great promise in monitoring LE variation at field scale, and may have value in planning irrigation schemes and providing water management decisions over agroecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA