Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(9): 4429-4450, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37070200

RESUMO

The long interspersed element 1 (LINE-1 or L1) integration is affected by many cellular factors through various mechanisms. Some of these factors are required for L1 amplification, while others either suppress or enhance specific steps during L1 propagation. Previously, TRIM28 has been identified to suppress transposable elements, including L1 expression via its canonical role in chromatin remodeling. Here, we report that TRIM28 through its B box domain increases L1 retrotransposition and facilitates shorter cDNA and L1 insert generation in cultured cells. Consistent with the latter, we observe that tumor specific L1 inserts are shorter in endometrial, ovarian, and prostate tumors with higher TRIM28 mRNA expression than in those with lower TRIM28 expression. We determine that three amino acids in the B box domain that are involved in TRIM28 multimerization are critical for its effect on both L1 retrotransposition and cDNA synthesis. We provide evidence that B boxes from the other two members in the Class VI TRIM proteins, TRIM24 and TRIM33, also increase L1 retrotransposition. Our findings could lead to a better understanding of the host/L1 evolutionary arms race in the germline and their interplay during tumorigenesis.


Assuntos
Elementos Nucleotídeos Longos e Dispersos , Proteína 28 com Motivo Tripartido , DNA Complementar/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Humanos , Proteína 28 com Motivo Tripartido/genética
2.
Nucleic Acids Res ; 50(4): 1888-1907, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35100410

RESUMO

Only a select few L1 loci in the human genome are expressed in any given cell line or organ, likely to minimize damage done to the genome. The epigenetic features and requirements of expressed L1 loci are currently unknown. Using human cells and comprehensive epigenetic analysis of individual expressed and unexpressed L1 loci, we determined that endogenous L1 transcription depends on a combination of epigenetic factors, including open chromatin, activating histone modifications, and hypomethylation at the L1 promoter. We demonstrate that the L1 promoter seems to require interaction with enhancer elements for optimal function. We utilize epigenetic context to predict the expression status of L1Hs loci that are poorly mappable with RNA-Seq. Our analysis identified a population of 'transitional' L1 loci that likely have greater potential to be activated during the epigenetic dysregulation seen in tumors and during aging because they are the most responsive to targeted CRISPR-mediated delivery of trans-activating domains. We demonstrate that an engineered increase in endogenous L1 mRNA expression increases Alu mobilization. Overall, our findings present the first global and comprehensive analysis of epigenetic status of individual L1 loci based on their expression status and demonstrate the importance of epigenetic context for L1 expression heterogeneity.


Assuntos
Metilação de DNA , Elementos Nucleotídeos Longos e Dispersos , Metilação de DNA/genética , Epigênese Genética , Genoma Humano , Humanos , Regiões Promotoras Genéticas
3.
Nucleic Acids Res ; 49(10): 5813-5831, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34023901

RESUMO

Expression of L1 mRNA, the first step in the L1 copy-and-paste amplification cycle, is a prerequisite for L1-associated genomic instability. We used a reported stringent bioinformatics method to parse L1 mRNA transcripts and measure the level of L1 mRNA expressed in mouse and rat organs at a locus-specific resolution. This analysis determined that mRNA expression of L1 loci in rodents exhibits striking organ specificity with less than 0.8% of loci shared between organs of the same organism. This organ specificity in L1 mRNA expression is preserved in male and female mice and across age groups. We discovered notable differences in L1 mRNA expression between sexes with only 5% of expressed L1 loci shared between male and female mice. Moreover, we report that the levels of total L1 mRNA expression and the number and spectrum of expressed L1 loci fluctuate with age as independent variables, demonstrating different patterns in different organs and sexes. Overall, our comparisons between organs and sexes and across ages ranging from 2 to 22 months establish previously unforeseen dynamic changes in L1 mRNA expression in vivo. These findings establish the beginning of an atlas of endogenous L1 mRNA expression across a broad range of biological variables that will guide future studies.


Assuntos
Encéfalo/metabolismo , Fígado/metabolismo , Elementos Nucleotídeos Longos e Dispersos , Pulmão/metabolismo , Especificidade de Órgãos/genética , Testículo/metabolismo , Fatores Etários , Animais , Biologia Computacional , Feminino , Perfilação da Expressão Gênica , Elementos Nucleotídeos Longos e Dispersos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos
4.
Nucleic Acids Res ; 45(9): 5294-5308, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28431148

RESUMO

Long interspersed element 1 (L1) is an autonomous non-LTR retroelement that is active in mammalian genomes. Although retrotranspositionally incompetent and functional L1 loci are present in the same genomes, it remains unknown whether non-functional L1s have any trans effect on mobilization of active elements. Using bioinformatic analysis, we identified over a thousand of human L1 loci containing at least one stop codon in their ORF1 sequence. RNAseq analysis confirmed that many of these loci are expressed. We demonstrate that introduction of equivalent stop codons in the full-length human L1 sequence leads to the expression of truncated ORF1 proteins. When supplied in trans some truncated human ORF1 proteins suppress human L1 retrotransposition. This effect requires the N-terminus and coiled-coil domain (C-C) as mutations within the ORF1p C-C domain abolish the suppressive effect of truncated proteins on L1 retrotransposition. We demonstrate that the expression levels and length of truncated ORF1 proteins influence their ability to suppress L1 retrotransposition. Taken together these findings suggest that L1 retrotransposition may be influenced by coexpression of defective L1 loci and that these L1 loci may reduce accumulation of de novo L1 integration events.


Assuntos
Elementos Nucleotídeos Longos e Dispersos/genética , Proteínas Mutantes/metabolismo , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Códon de Terminação/genética , Biologia Computacional , Loci Gênicos , Genoma Humano , Células HeLa , Humanos , Camundongos , Proteínas Mutantes/química , Mutação/genética , Células NIH 3T3 , Plasmídeos/genética , Domínios Proteicos , Proteínas/química , Especificidade da Espécie
5.
Nucleic Acids Res ; 45(5): e31, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-27899577

RESUMO

L1 elements represent the only currently active, autonomous retrotransposon in the human genome, and they make major contributions to human genetic instability. The vast majority of the 500 000 L1 elements in the genome are defective, and only a relatively few can contribute to the retrotransposition process. However, there is currently no comprehensive approach to identify the specific loci that are actively transcribed separate from the excess of L1-related sequences that are co-transcribed within genes. We have developed RNA-Seq procedures, as well as a 1200 bp 5΄ RACE product coupled with PACBio sequencing that can identify the specific L1 loci that contribute most of the L1-related RNA reads. At least 99% of L1-related sequences found in RNA do not arise from the L1 promoter, instead representing pieces of L1 incorporated in other cellular RNAs. In any given cell type a relatively few active L1 loci contribute to the 'authentic' L1 transcripts that arise from the L1 promoter, with significantly different loci seen expressed in different tissues.


Assuntos
Cromossomos Humanos/química , Loci Gênicos , Genoma Humano , Elementos Nucleotídeos Longos e Dispersos , RNA Mensageiro/genética , Transcrição Gênica , Animais , Mapeamento Cromossômico , Cromossomos Humanos/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , Instabilidade Genômica , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Técnicas de Amplificação de Ácido Nucleico , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
6.
Nucleic Acids Res ; 44(10): 4818-34, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27095191

RESUMO

Long Interspersed Element 1 (LINE-1 or L1) is capable of causing genomic instability through the activity of the L1 ORF2 protein (ORF2p). This protein contains endonuclease (EN) and reverse transcriptase (RT) domains that are necessary for the retrotransposition of L1 and the Short Interspersed Element (SINE) Alu. The functional importance of approximately 50% of the ORF2p molecule remains unknown, but some of these sequences could play a role in retrotransposition, or be necessary for the enzymatic activities of the EN and/or RT domains. Conventional approaches using the full-length, contiguous ORF2p make it difficult to study the involvement of these unannotated sequences in the function of L1 ORF2p. Our lab has developed a Bipartile Alu Retrotransposition (BAR) assay that relies on separate truncated ORF2p fragments: an EN-containing and an RT-containing fragment. We validated the utility of this method for studying the ORF2p function in retrotransposition by assessing the effect of expression levels and previously characterized mutations on BAR. Using BAR, we identified two pairs of amino acids important for retrotransposition, an FF and a WD. The WD appears to play a role in cDNA synthesis by the ORF2p molecule, despite being outside the canonical RT domain.


Assuntos
Elementos Alu , Endonucleases/química , DNA Polimerase Dirigida por RNA/química , Endonucleases/metabolismo , Células HeLa , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Domínios e Motivos de Interação entre Proteínas , DNA Polimerase Dirigida por RNA/metabolismo , Alinhamento de Sequência
7.
J Pineal Res ; 60(2): 167-77, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26607298

RESUMO

Leiomyosarcoma (LMS) represents a highly malignant, rare soft tissue sarcoma with high rates of morbidity and mortality. Previously, we demonstrated that tissue-isolated human LMS xenografts perfused in situ are highly sensitive to the direct anticancer effects of physiological nocturnal blood levels of melatonin which inhibited tumour cell proliferative activity, linoleic acid (LA) uptake and metabolism to 13-hydroxyoctadecadienoic acid (13-HODE). Here, we show the effects of low pharmacological blood concentrations of melatonin following oral ingestion of a melatonin supplement by healthy adult human female subjects on tumour proliferative activity, aerobic glycolysis (Warburg effect) and LA metabolic signalling in tissue-isolated LMS xenografts perfused in situ with this blood. Melatonin markedly suppressed aerobic glycolysis and induced a complete inhibition of tumour LA uptake, 13-HODE release, as well as significant reductions in tumour cAMP levels, DNA content and [(3) H]-thymidine incorporation into DNA. Furthermore, melatonin completely suppressed the phospho-activation of ERK 1/2, AKT, GSK3ß and NF-kB (p65). The addition of S20928, a nonselective melatonin antagonist, reversed these melatonin inhibitory effects. Moreover, in in vitro cell culture studies, physiological concentrations of melatonin repressed cell proliferation and cell invasion. These results demonstrate that nocturnal melatonin directly inhibited tumour growth and invasion of human LMS via suppression of the Warburg effect, LA uptake and other related signalling mechanisms. An understanding of these novel signalling pathway(s) and their association with aerobic glycolysis and LA metabolism in human LMS may lead to new circadian-based therapies for the prevention and treatment of LMS and potentially other mesenchymally derived solid tumours.


Assuntos
Glicólise/efeitos dos fármacos , Leiomiossarcoma/tratamento farmacológico , Melatonina/metabolismo , Animais , Sobrevivência Celular , Feminino , Humanos , Leiomiossarcoma/metabolismo , Leiomiossarcoma/patologia , Metástase Neoplásica , Ratos , Ratos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Nucleic Acids Res ; 42(16): 10488-502, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25143528

RESUMO

Expression of the L1 retrotransposon can damage the genome through insertional mutagenesis and the generation of DNA double-strand breaks (DSBs). The majority of L1 loci in the human genome are 5'-truncated and therefore incapable of retrotransposition. While thousands of full-length L1 loci remain, most are retrotranspositionally-incompetent due to inactivating mutations. However, mutations leading to premature stop codons within the L1 ORF2 sequence may yield truncated proteins that retain a functional endonuclease domain. We demonstrate that some truncated ORF2 proteins cause varying levels of toxicity and DNA damage when chronically overexpressed in mammalian cells. Furthermore, transfection of some ORF2 constructs containing premature stop codons supported low levels of Alu retrotransposition, demonstrating the potential for select retrotranspositionally-incompetent L1 loci to generate genomic instability. This result suggests yet another plausible explanation for the relative success of Alu elements in populating the human genome. Our data suggest that a subset of retrotranspositionally-incompetent L1s, previously considered to be harmless to genomic integrity, may have the potential to cause chronic DNA damage by introducing DSBs and mobilizing Alu. These results imply that the number of known L1 loci in the human genome that potentially threaten its stability may not be limited to the retrotranspositionally active loci.


Assuntos
Instabilidade Genômica , Elementos Nucleotídeos Longos e Dispersos , Elementos Alu , Animais , Códon sem Sentido , Dano ao DNA , Endonucleases/genética , Endonucleases/metabolismo , Loci Gênicos , Genoma Humano , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Estrutura Terciária de Proteína , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo
9.
Nucleic Acids Res ; 42(12): 7694-707, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24914052

RESUMO

Expression of long interspersed element-1 (L1) is upregulated in many human malignancies. L1 can introduce genomic instability via insertional mutagenesis and DNA double-strand breaks, both of which may promote cancer. Light exposure at night, a recently recognized carcinogen, is associated with an increased risk of cancer in shift workers. We report that melatonin receptor 1 inhibits mobilization of L1 in cultured cells through downregulation of L1 mRNA and ORF1 protein. The addition of melatonin receptor antagonists abolishes the MT1 effect on retrotransposition in a dose-dependent manner. Furthermore, melatonin-rich, but not melatonin-poor, human blood collected at different times during the circadian cycle suppresses endogenous L1 mRNA during in situ perfusion of tissue-isolated xenografts of human cancer. Supplementation of human blood with exogenous melatonin or melatonin receptor antagonist during the in situ perfusion establishes a receptor-mediated action of melatonin on L1 expression. Combined tissue culture and in vivo data support that environmental light exposure of the host regulates expression of L1 elements in tumors. Our data imply that light-induced suppression of melatonin production in shift workers may increase L1-induced genomic instability in their genomes and suggest a possible connection between L1 activity and increased incidence of cancer associated with circadian disruption.


Assuntos
Luz , Elementos Nucleotídeos Longos e Dispersos , Melatonina/fisiologia , Neoplasias da Próstata/genética , Receptor MT1 de Melatonina/metabolismo , Elementos Alu , Animais , Linhagem Celular Tumoral , Células Cultivadas , Escuridão , Humanos , Masculino , Melatonina/sangue , Mutação , Neoplasias/epidemiologia , Fosforilação/genética , Neoplasias da Próstata/metabolismo , Proteínas/genética , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Receptor MT1 de Melatonina/antagonistas & inibidores , Risco , Ubiquitinação/genética
11.
J Pineal Res ; 59(1): 60-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25857269

RESUMO

Chemotherapeutic resistance, particularly to doxorubicin (Dox), represents a major impediment to successfully treating breast cancer and is linked to elevated tumor metabolism and tumor over-expression and/or activation of various families of receptor- and non-receptor-associated tyrosine kinases. Disruption of circadian time structure and suppression of nocturnal melatonin production by dim light exposure at night (dLEN), as occurs with shift work, and/or disturbed sleep-wake cycles, is associated with a significantly increased risk of an array of diseases, including breast cancer. Melatonin inhibits human breast cancer growth via mechanisms that include the suppression of tumor metabolism and inhibition of expression or phospho-activation of the receptor kinases AKT and ERK1/2 and various other kinases and transcription factors. We demonstrate in tissue-isolated estrogen receptor alpha-positive (ERα+) MCF-7 human breast cancer xenografts, grown in nude rats maintained on a light/dark cycle of LD 12:12 in which dLEN is present during the dark phase (suppressed endogenous nocturnal melatonin), a significant shortening of tumor latency-to-onset, increased tumor metabolism and growth, and complete intrinsic resistance to Dox therapy. Conversely, a LD 12:12 dLEN environment incorporating nocturnal melatonin replacement resulted in significantly lengthened tumor latency-to-onset, tumor regression, suppression of nighttime tumor metabolism, and kinase and transcription factor phosphorylation, while Dox sensitivity was completely restored. Melatonin acts as both a tumor metabolic inhibitor and circadian-regulated kinase inhibitor to reestablish the sensitivity of breast tumors to Dox and drive tumor regression, indicating that dLEN-induced circadian disruption of nocturnal melatonin production contributes to a complete loss of tumor sensitivity to Dox chemotherapy.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Ritmo Circadiano/efeitos da radiação , Doxorrubicina/uso terapêutico , Luz , Melatonina/metabolismo , Animais , Western Blotting , Resistencia a Medicamentos Antineoplásicos/efeitos da radiação , Feminino , Glucose/metabolismo , Humanos , Células MCF-7 , Camundongos Nus , Oxigênio/metabolismo , Ratos , Ratos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Mol Biol Evol ; 30(1): 88-99, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22918960

RESUMO

Non-long terminal repeat retroelements continue to impact the human genome through cis-activity of long interspersed element-1 (LINE-1 or L1) and trans-mobilization of Alu. Current activity is dominated by modern subfamilies of these elements, leaving behind an evolutionary graveyard of extinct Alu and L1 subfamilies. Because Alu is a nonautonomous element that relies on L1 to retrotranspose, there is the possibility that competition between these elements has driven selection and antagonistic coevolution between Alu and L1. Through analysis of synonymous versus nonsynonymous codon evolution across L1 subfamilies, we find that the C-terminal ORF2 cys domain experienced a dramatic increase in amino acid substitution rate in the transition from L1PA5 to L1PA4 subfamilies. This observation coincides with the previously reported rapid evolution of ORF1 during the same transition period. Ancestral Alu sequences have been previously reconstructed, as their short size and ubiquity have made it relatively easy to retrieve consensus sequences from the human genome. In contrast, creating constructs of extinct L1 copies is a more laborious task. Here, we report our efforts to recreate and evaluate the retrotransposition capabilities of two ancestral L1 elements, L1PA4 and L1PA8 that were active ~18 and ~40 Ma, respectively. Relative to the modern L1PA1 subfamily, we find that both elements are similarly active in a cell culture retrotransposition assay in HeLa, and both are able to efficiently trans-mobilize Alu elements from several subfamilies. Although we observe some variation in Alu subfamily retrotransposition efficiency, any coevolution that may have occurred between LINEs and SINEs is not evident from these data. Population dynamics and stochastic variation in the number of active source elements likely play an important role in individual LINE or SINE subfamily amplification. If coevolution also contributes to changing retrotransposition rates and the progression of subfamilies, cell factors are likely to play an important mediating role in changing LINE-SINE interactions over evolutionary time.


Assuntos
Elementos Alu/genética , Evolução Molecular , Genoma Humano , Elementos Nucleotídeos Longos e Dispersos/genética , Códon , Sequência Consenso , Endonucleases/genética , Endonucleases/metabolismo , Células HeLa , Humanos , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Elementos Nucleotídeos Curtos e Dispersos/genética , Sequências Repetidas Terminais
13.
Genes (Basel) ; 15(2)2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38397133

RESUMO

L1 elements can cause DNA damage and genomic variation via retrotransposition and the generation of endonuclease-dependent DNA breaks. These processes require L1 ORF2p protein that contains an endonuclease domain, which cuts genomic DNA, and a reverse transcriptase domain, which synthesizes cDNA. The complete impact of L1 enzymatic activities on genome stability and cellular function remains understudied, and the spectrum of L1-induced mutations, other than L1 insertions, is mostly unknown. Using an inducible system, we demonstrate that an ORF2p containing functional reverse transcriptase is sufficient to elicit DNA damage response even in the absence of the functional endonuclease. Using a TK/Neo reporter system that captures misrepaired DNA breaks, we demonstrate that L1 expression results in large genomic deletions that lack any signatures of L1 involvement. Using an in vitro cleavage assay, we demonstrate that L1 endonuclease efficiently cuts telomeric repeat sequences. These findings support that L1 could be an unrecognized source of disease-promoting genomic deletions, telomere dysfunction, and an underappreciated source of chronic RT-mediated DNA damage response in mammalian cells. Our findings expand the spectrum of biological processes that can be triggered by functional and nonfunctional L1s, which have impactful evolutionary- and health-relevant consequences.


Assuntos
Fenômenos Biológicos , Elementos Nucleotídeos Longos e Dispersos , Humanos , Animais , Elementos Nucleotídeos Longos e Dispersos/genética , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Células HeLa , Endonucleases/genética , Telômero/genética , Telômero/metabolismo , Reparo do DNA/genética , Mamíferos/genética
14.
Nucleic Acids Res ; 38(12): 3909-22, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20215437

RESUMO

LINE-1 expression damages host DNA via insertions and endonuclease-dependent DNA double-strand breaks (DSBs) that are highly toxic and mutagenic. The predominant tissue of LINE-1 expression has been considered to be the germ line. We show that both full-length and processed L1 transcripts are widespread in human somatic tissues and transformed cells, with significant variation in both L1 expression and L1 mRNA processing. This is the first demonstration that RNA processing is a major regulator of L1 activity. Many tissues also produce translatable spliced transcript (SpORF2). An Alu retrotransposition assay, COMET assays and 53BP1 foci staining show that the SpORF2 product can support functional ORF2 protein expression and can induce DNA damage in normal cells. Tests of the senescence-associated beta-galactosidase expression suggest that expression of exogenous full-length L1, or the SpORF2 mRNA alone in human fibroblasts and adult stem cells triggers a senescence-like phenotype, which is one of the reported responses to DNA damage. In contrast to previous assumptions that L1 expression is germ line specific, the increased spectrum of tissues exposed to L1-associated damage suggests a role for L1 as an endogenous mutagen in somatic tissues. These findings have potential consequences for the whole organism in the form of cancer and mammalian aging.


Assuntos
Elementos Nucleotídeos Longos e Dispersos , Adulto , Elementos Alu , Animais , Linhagem Celular , Senescência Celular , Dano ao DNA , Endonucleases/genética , Endonucleases/metabolismo , Fibroblastos/metabolismo , Humanos , Camundongos , Poliadenilação , Splicing de RNA , RNA Mensageiro/metabolismo , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Células-Tronco/metabolismo
15.
PLoS Genet ; 5(4): e1000458, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19390602

RESUMO

Mobile elements comprise close to one half of the mass of the human genome. Only LINE-1 (L1), an autonomous non-Long Terminal Repeat (LTR) retrotransposon, and its non-autonomous partners-such as the retropseudogenes, SVA, and the SINE, Alu-are currently active human retroelements. Experimental evidence shows that Alu retrotransposition depends on L1 ORF2 protein, which has led to the presumption that LINEs and SINEs share the same basic insertional mechanism. Our data demonstrate clear differences in the time required to generate insertions between marked Alu and L1 elements. In our tissue culture system, the process of L1 insertion requires close to 48 hours. In contrast to the RNA pol II-driven L1, we find that pol III transcribed elements (Alu, the rodent SINE B2, and the 7SL, U6 and hY sequences) can generate inserts within 24 hours or less. Our analyses demonstrate that the observed retrotransposition timing does not dictate insertion rate and is independent of the type of reporter cassette utilized. The additional time requirement by L1 cannot be directly attributed to differences in transcription, transcript length, splicing processes, ORF2 protein production, or the ability of functional ORF2p to reach the nucleus. However, the insertion rate of a marked Alu transcript drastically drops when driven by an RNA pol II promoter (CMV) and the retrotransposition timing parallels that of L1. Furthermore, the "pol II Alu transcript" behaves like the processed pseudogenes in our retrotransposition assay, requiring supplementation with L1 ORF1p in addition to ORF2p. We postulate that the observed differences in retrotransposition kinetics of these elements are dictated by the type of RNA polymerase generating the transcript. We present a model that highlights the critical differences of LINE and SINE transcripts that likely define their retrotransposition timing.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Elementos Nucleotídeos Longos e Dispersos , Mutagênese Insercional , Fases de Leitura Aberta , Elementos Nucleotídeos Curtos e Dispersos , Elementos Alu , RNA Polimerases Dirigidas por DNA/genética , Células HeLa , Humanos , Modelos Genéticos , Fatores de Tempo
16.
Semin Cancer Biol ; 20(4): 200-10, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20600922

RESUMO

Genetic instability is one of the principal hallmarks and causative factors in cancer. Human transposable elements (TE) have been reported to cause human diseases, including several types of cancer through insertional mutagenesis of genes critical for preventing or driving malignant transformation. In addition to retrotransposition-associated mutagenesis, TEs have been found to contribute even more genomic rearrangements through non-allelic homologous recombination. TEs also have the potential to generate a wide range of mutations derivation of which is difficult to directly trace to mobile elements, including double strand breaks that may trigger mutagenic genomic rearrangements. Genome-wide hypomethylation of TE promoters and significantly elevated TE expression in almost all human cancers often accompanied by the loss of critical DNA sensing and repair pathways suggests that the negative impact of mobile elements on genome stability should increase as human tumors evolve. The biological consequences of elevated retroelement expression, such as the rate of their amplification, in human cancers remain obscure, particularly, how this increase translates into disease-relevant mutations. This review is focused on the cellular mechanisms that control human TE-associated mutagenesis in cancer and summarizes the current understanding of TE contribution to genetic instability in human malignancies.


Assuntos
Neoplasias/genética , Retroelementos/fisiologia , Animais , Sequência de Bases , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica/genética , Humanos , Conhecimento , Modelos Biológicos , Mutagênese Insercional/métodos , Mutagênese Insercional/fisiologia , Polimorfismo Genético , Retroelementos/genética
17.
Anal Biochem ; 417(1): 159-61, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21693100

RESUMO

Reporter gene assays have proven to be an important tool in analyzing cis and trans factors that influence gene expression. However, they have sometimes been adapted for studies in which they are not totally reliable. Modifications that change the RNA expressed from the reporter gene may result in regulation of reporter gene expression at multiple levels simultaneously. The data provided here illustrate the difficulties that may arise from posttranscription regulation in various reporter gene formats. This serves as a warning that further RNA studies may be necessary, if comparisons are to be made between reporter constructs whose RNA is not identical.


Assuntos
Expressão Gênica , Genes Reporter/genética , RNA Mensageiro/análise , Estatística como Assunto/métodos , Northern Blotting , Humanos , Mutação Puntual/genética , RNA Mensageiro/genética
18.
Mob DNA ; 11: 2, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31921361

RESUMO

BACKGROUND: Retrotransposons are one of the oldest evolutionary forces shaping mammalian genomes, with the ability to mobilize from one genomic location to another. This mobilization is also a significant factor in human disease. The only autonomous human retroelement, L1, has propagated to make up 17% of the human genome, accumulating over 500,000 copies. The majority of these loci are truncated or defective with only a few reported to remain capable of retrotransposition. We have previously published a strand-specific RNA-Seq bioinformatics approach to stringently identify at the locus-specific level the few expressed full-length L1s using cytoplasmic RNA. With growing repositories of RNA-Seq data, there is potential to mine these datasets to identify and study expressed L1s at single-locus resolution, although many datasets are not strand-specific or not generated from cytoplasmic RNA. RESULTS: We developed whole-cell, cytoplasmic and nuclear RNA-Seq datasets from 22Rv1 prostate cancer cells to test the influence of different preparations on the quality and effort needed to measure L1 expression. We found that there was minimal data loss in the identification of full-length expressed L1 s using whole cell, strand-specific RNA-Seq data compared to cytoplasmic, strand-specific RNA-Seq data. However, this was only possible with an increased amount of manual curation of the bioinformatics output to eliminate increased background. About half of the data was lost when the sequenced datasets were non-strand specific. CONCLUSIONS: The results of these studies demonstrate that with rigorous manual curation the utilization of stranded RNA-Seq datasets allow identification of expressed L1 loci from either cytoplasmic or whole-cell RNA-Seq datasets.

19.
Mob DNA ; 10: 15, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31011371

RESUMO

Transposable element (TE) insertions are responsible for a significant fraction of spontaneous germ line mutations reported in inbred mouse strains. This major contribution of TEs to the mutational landscape in mouse contrasts with the situation in human, where their relative contribution as germ line insertional mutagens is much lower. In this focussed review, we provide comprehensive lists of TE-induced mouse mutations, discuss the different TE types involved in these insertional mutations and elaborate on particularly interesting cases. We also discuss differences and similarities between the mutational role of TEs in mice and humans.

20.
J Vis Exp ; (147)2019 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-31157783

RESUMO

Long INterspersed Elements-1 (LINEs/L1s) are repetitive elements that can copy and randomly insert in the genome resulting in genomic instability and mutagenesis. Understanding the expression patterns of L1 loci at the individual level will lend to the understanding of the biology of this mutagenic element. This autonomous element makes up a significant portion of the human genome with over 500,000 copies, though 99% are truncated and defective. However, their abundance and dominant number of defective copies make it challenging to identify authentically expressed L1s from L1-related sequences expressed as part of other genes. It is also challenging to identify which specific L1 locus is expressed due to the repetitive nature of the elements. Overcoming these challenges, we present an RNA-Seq bioinformatic approach to identify L1 expression at the locus specific level. In summary, we collect cytoplasmic RNA, select for polyadenylated transcripts, and utilize strand-specific RNA-Seq analyses to uniquely map reads to L1 loci in the human reference genome. We visually curate each L1 locus with uniquely mapped reads to confirm transcription from its own promoter and adjust mapped transcript reads to account for mappability of each individual L1 locus. This approach was applied to a prostate tumor cell line, DU145, to demonstrate the ability of this protocol to detect expression from a small number of the full-length L1 elements.


Assuntos
Biologia Computacional/métodos , Loci Gênicos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Elementos Nucleotídeos Longos e Dispersos/genética , Análise de Sequência de RNA/métodos , Algoritmos , Linhagem Celular Tumoral , Genoma Humano , Instabilidade Genômica , Células HeLa , Humanos , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA