Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Int J Cancer ; 154(11): 1900-1910, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339851

RESUMO

Air pollution has been shown to significantly impact human health including cancer. Gastric and upper aerodigestive tract (UADT) cancers are common and increased risk has been associated with smoking and occupational exposures. However, the association with air pollution remains unclear. We pooled European subcohorts (N = 287,576 participants for gastric and N = 297,406 for UADT analyses) and investigated the association between residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone in the warm season (O3w) with gastric and UADT cancer. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. During 5,305,133 and 5,434,843 person-years, 872 gastric and 1139 UADT incident cancer cases were observed, respectively. For gastric cancer, we found no association with PM2.5, NO2 and BC while for UADT the hazard ratios (95% confidence interval) were 1.15 (95% CI: 1.00-1.33) per 5 µg/m3 increase in PM2.5, 1.19 (1.08-1.30) per 10 µg/m3 increase in NO2, 1.14 (1.04-1.26) per 0.5 × 10-5 m-1 increase in BC and 0.81 (0.72-0.92) per 10 µg/m3 increase in O3w. We found no association between long-term ambient air pollution exposure and incidence of gastric cancer, while for long-term exposure to PM2.5, NO2 and BC increased incidence of UADT cancer was observed.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias Gástricas , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Dióxido de Nitrogênio/efeitos adversos , Neoplasias Gástricas/epidemiologia , Neoplasias Gástricas/etiologia , Incidência , Exposição Ambiental/efeitos adversos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise
2.
Environ Res ; 252(Pt 3): 118942, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38649012

RESUMO

Despite the known link between air pollution and cause-specific mortality, its relation to chronic kidney disease (CKD)-associated mortality is understudied. Therefore, we investigated the association between long-term exposure to air pollution and CKD-related mortality in a large multicentre population-based European cohort. Cohort data were linked to local mortality registry data. CKD-death was defined as ICD10 codes N18-N19 or corresponding ICD9 codes. Mean annual exposure at participant's home address was determined with fine spatial resolution exposure models for nitrogen dioxide (NO2), black carbon (BC), ozone (O3), particulate matter ≤2.5 µm (PM2.5) and several elemental constituents of PM2.5. Cox regression models were adjusted for age, sex, cohort, calendar year of recruitment, smoking status, marital status, employment status and neighbourhood mean income. Over a mean follow-up time of 20.4 years, 313 of 289,564 persons died from CKD. Associations were positive for PM2.5 (hazard ratio (HR) with 95% confidence interval (CI) of 1.31 (1.03-1.66) per 5 µg/m3, BC (1.26 (1.03-1.53) per 0.5 × 10- 5/m), NO2 (1.13 (0.93-1.38) per 10 µg/m3) and inverse for O3 (0.71 (0.54-0.93) per 10 µg/m3). Results were robust to further covariate adjustment. Exclusion of the largest sub-cohort contributing 226 cases, led to null associations. Among the elemental constituents, Cu, Fe, K, Ni, S and Zn, representing different sources including traffic, biomass and oil burning and secondary pollutants, were associated with CKD-related mortality. In conclusion, our results suggest an association between air pollution from different sources and CKD-related mortality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Exposição Ambiental , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/mortalidade , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/induzido quimicamente , Masculino , Feminino , Europa (Continente)/epidemiologia , Pessoa de Meia-Idade , Idoso , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/efeitos adversos , Estudos de Coortes , Exposição Ambiental/efeitos adversos , Material Particulado/análise , Material Particulado/efeitos adversos , Adulto
3.
Br J Cancer ; 129(4): 656-664, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37420001

RESUMO

BACKGROUND: Risk factors for malignant tumours of the central nervous system (CNS) are largely unknown. METHODS: We pooled six European cohorts (N = 302,493) and assessed the association between residential exposure to nitrogen dioxide (NO2), fine particles (PM2.5), black carbon (BC), ozone (O3) and eight elemental components of PM2.5 (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) and malignant intracranial CNS tumours defined according to the International Classification of Diseases ICD-9/ICD-10 codes 192.1/C70.0, 191.0-191.9/C71.0-C71.9, 192.0/C72.2-C72.5. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. RESULTS: During 5,497,514 person-years of follow-up (average 18.2 years), we observed 623 malignant CNS tumours. The results of the fully adjusted linear analyses showed a hazard ratio (95% confidence interval) of 1.07 (0.95, 1.21) per 10 µg/m³ NO2, 1.17 (0.96, 1.41) per 5 µg/m³ PM2.5, 1.10 (0.97, 1.25) per 0.5 10-5m-1 BC, and 0.99 (0.84, 1.17) per 10 µg/m³ O3. CONCLUSIONS: We observed indications of an association between exposure to NO2, PM2.5, and BC and tumours of the CNS. The PM elements were not consistently associated with CNS tumour incidence.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias Encefálicas , Ozônio , Humanos , Material Particulado/efeitos adversos , Dióxido de Nitrogênio , Exposição Ambiental/efeitos adversos , Poluição do Ar/efeitos adversos , Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/etiologia , Poluentes Atmosféricos/efeitos adversos
4.
Eur Respir J ; 61(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36822631

RESUMO

BACKGROUND: The beneficial effect of improving air quality on lung function development remains understudied. We assessed associations of changes in ambient air pollution levels with lung function growth from childhood until young adulthood in a Swedish cohort study. METHODS: In the prospective birth cohort BAMSE (Children, Allergy, Environment, Stockholm, Epidemiology (in Swedish)), spirometry was conducted at the 8-year (2002-2004), 16-year (2011-2013) and 24-year (2016-2019) follow-ups. Participants with spirometry data at 8 years and at least one other measurement in subsequent follow-ups were included (1509 participants with 3837 spirometry measurements). Ambient air pollution levels (particulate matter with diameter ≤2.5 µm (PM2.5), particulate matter with diameter ≤10 µm (PM10), black carbon (BC) and nitrogen oxides (NO x )) at residential addresses were estimated using dispersion modelling. Linear mixed effect models were used to estimate associations between air pollution exposure change and lung function development. RESULTS: Overall, air pollution levels decreased progressively during the study period. For example, the median (interquartile range (IQR)) level of PM2.5 decreased from 8.24 (0.92) µg·m-3 during 2002-2004 to 5.21 (0.67) µg·m-3 during 2016-2019. At the individual level, for each IQR reduction of PM2.5 the lung function growth rate increased by 4.63 (95% CI 1.64-7.61) mL per year (p<0.001) for forced expiratory volume in 1 s and 9.38 (95% CI 4.76-14.00) mL per year (p<0.001) for forced vital capacity. Similar associations were also observed for reductions of BC and NO x . Associations persisted after adjustment for potential confounders and were not modified by asthma, allergic sensitisation, overweight, early-life air pollution exposure or dietary antioxidant intake. CONCLUSIONS: Long-term reduction of air pollution is associated with positive lung function development from childhood to young adulthood.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Criança , Humanos , Adolescente , Adulto Jovem , Adulto , Estudos de Coortes , Estudos Prospectivos , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Pulmão , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise
5.
Environ Res ; 239(Pt 1): 117230, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37806476

RESUMO

BACKGROUND: Air pollution is a growing concern worldwide, with significant impacts on human health. Multiple myeloma is a type of blood cancer with increasing incidence. Studies have linked air pollution exposure to various types of cancer, including leukemia and lymphoma, however, the relationship with multiple myeloma incidence has not been extensively investigated. METHODS: We pooled four European cohorts (N = 234,803) and assessed the association between residential exposure to nitrogen dioxide (NO2), fine particles (PM2.5), black carbon (BC), and ozone (O3) and multiple myeloma. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. RESULTS: During 4,415,817 person-years of follow-up (average 18.8 years), we observed 404 cases of multiple myeloma. The results of the fully adjusted linear analyses showed hazard ratios (95% confidence interval) of 0.99 (0.84, 1.16) per 10 µg/m³ NO2, 1.04 (0.82, 1.33) per 5 µg/m³ PM2.5, 0.99 (0.84, 1.18) per 0.5 10-5 m-1 BCE, and 1.11 (0.87, 1.41) per 10 µg/m³ O3. CONCLUSIONS: We did not observe an association between long-term ambient air pollution exposure and incidence of multiple myeloma.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Mieloma Múltiplo , Humanos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Estudos de Coortes , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Mieloma Múltiplo/induzido quimicamente , Mieloma Múltiplo/epidemiologia , Dióxido de Nitrogênio/toxicidade , Dióxido de Nitrogênio/análise , Material Particulado/análise
6.
Am J Respir Crit Care Med ; 205(12): 1429-1439, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35258439

RESUMO

Rationale: Ambient air pollution exposure has been linked to mortality from chronic cardiorespiratory diseases, while evidence on respiratory infections remains more limited. Objectives: We examined the association between long-term exposure to air pollution and pneumonia-related mortality in adults in a pool of eight European cohorts. Methods: Within the multicenter project ELAPSE (Effects of Low-Level Air Pollution: A Study in Europe), we pooled data from eight cohorts among six European countries. Annual mean residential concentrations in 2010 for fine particulate matter, nitrogen dioxide (NO2), black carbon (BC), and ozone were estimated using Europe-wide hybrid land-use regression models. We applied stratified Cox proportional hazard models to investigate the associations between air pollution and pneumonia, influenza, and acute lower respiratory infections (ALRI) mortality. Measurements and Main Results: Of 325,367 participants, 712 died from pneumonia and influenza combined, 682 from pneumonia, and 695 from ALRI during a mean follow-up of 19.5 years. NO2 and BC were associated with 10-12% increases in pneumonia and influenza combined mortality, but 95% confidence intervals included unity (hazard ratios, 1.12 [0.99-1.26] per 10 µg/m3 for NO2; 1.10 [0.97-1.24] per 0.5 10-5m-1 for BC). Associations with pneumonia and ALRI mortality were almost identical. We detected effect modification suggesting stronger associations with NO2 or BC in overweight, employed, or currently smoking participants compared with normal weight, unemployed, or nonsmoking participants. Conclusions: Long-term exposure to combustion-related air pollutants NO2 and BC may be associated with mortality from lower respiratory infections, but larger studies are needed to estimate these associations more precisely.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Influenza Humana , Pneumonia , Adulto , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Dióxido de Nitrogênio/efeitos adversos , Material Particulado/efeitos adversos , Material Particulado/análise
7.
Br J Cancer ; 126(10): 1499-1507, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35173304

RESUMO

BACKGROUND: The evidence linking ambient air pollution to bladder cancer is limited and mixed. METHODS: We assessed the associations of bladder cancer incidence with residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC), warm season ozone (O3) and eight PM2.5 elemental components (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) in a pooled cohort (N = 302,493). Exposures were primarily assessed based on 2010 measurements and back-extrapolated to the baseline years. We applied Cox proportional hazard models adjusting for individual- and area-level potential confounders. RESULTS: During an average of 18.2 years follow-up, 967 bladder cancer cases occurred. We observed a positive though statistically non-significant association between PM2.5 and bladder cancer incidence. Hazard Ratios (HR) were 1.09 (95% confidence interval (CI): 0.93-1.27) per 5 µg/m3 for 2010 exposure and 1.06 (95% CI: 0.99-1.14) for baseline exposure. Effect estimates for NO2, BC and O3 were close to unity. A positive association was observed with PM2.5 zinc (HR 1.08; 95% CI: 1.00-1.16 per 10 ng/m3). CONCLUSIONS: We found suggestive evidence of an association between long-term PM2.5 mass exposure and bladder cancer, strengthening the evidence from the few previous studies. The association with zinc in PM2.5 suggests the importance of industrial emissions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias da Bexiga Urinária , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Incidência , Masculino , Dióxido de Nitrogênio , Material Particulado/efeitos adversos , Doenças Raras , Neoplasias da Bexiga Urinária/epidemiologia , Neoplasias da Bexiga Urinária/etiologia , Zinco
8.
Environ Sci Technol ; 56(13): 9277-9290, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35737879

RESUMO

We assessed mortality risks associated with source-specific fine particles (PM2.5) in a pooled European cohort of 323,782 participants. Cox proportional hazard models were applied to estimate mortality hazard ratios (HRs) for source-specific PM2.5 identified through a source apportionment analysis. Exposure to 2010 annual average concentrations of source-specific PM2.5 components was assessed at baseline residential addresses. The source apportionment resulted in the identification of five sources: traffic, residual oil combustion, soil, biomass and agriculture, and industry. In single-source analysis, all identified sources were significantly positively associated with increased natural mortality risks. In multisource analysis, associations with all sources attenuated but remained statistically significant with traffic, oil, and biomass and agriculture. The highest association per interquartile increase was observed for the traffic component (HR: 1.06; 95% CI: 1.04 and 1.08 per 2.86 µg/m3 increase) across five identified sources. On a 1 µg/m3 basis, the residual oil-related PM2.5 had the strongest association (HR: 1.13; 95% CI: 1.05 and 1.22), which was substantially higher than that for generic PM2.5 mass, suggesting that past estimates using the generic PM2.5 exposure response function have underestimated the potential clean air health benefits of reducing fossil-fuel combustion. Source-specific associations with cause-specific mortality were in general consistent with findings of natural mortality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Estudos de Coortes , Exposição Ambiental/análise , Humanos , Material Particulado/análise
9.
Environ Res ; 215(Pt 2): 114385, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36154858

RESUMO

BACKGROUND: Particulate matter (PM) is classified as a group 1 human carcinogen. Previous experimental studies suggest that particles in diesel exhaust induce oxidative stress, inflammation and DNA damage in kidney cells, but the evidence from population studies linking air pollution to kidney cancer is limited. METHODS: We pooled six European cohorts (N = 302,493) to assess the association of residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC), warm season ozone (O3) and eight elemental components of PM2.5 (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) with cancer of the kidney parenchyma. The main exposure model was developed for year 2010. We defined kidney parenchyma cancer according to the International Classification of Diseases 9th and 10th Revision codes 189.0 and C64. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. RESULTS: The participants were followed from baseline (1985-2005) to 2011-2015. A total of 847 cases occurred during 5,497,514 person-years of follow-up (average 18.2 years). Median (5-95%) exposure levels of NO2, PM2.5, BC and O3 were 24.1 µg/m3 (12.8-39.2), 15.3 µg/m3 (8.6-19.2), 1.6 10-5 m-1 (0.7-2.1), and 87.0 µg/m3 (70.3-97.4), respectively. The results of the fully adjusted linear analyses showed a hazard ratio (HR) of 1.03 (95% confidence interval [CI]: 0.92, 1.15) per 10 µg/m³ NO2, 1.04 (95% CI: 0.88, 1.21) per 5 µg/m³ PM2.5, 0.99 (95% CI: 0.89, 1.11) per 0.5 10-5 m-1 BCE, and 0.88 (95% CI: 0.76, 1.02) per 10 µg/m³ O3. We did not find associations between any of the elemental components of PM2.5 and cancer of the kidney parenchyma. CONCLUSION: We did not observe an association between long-term ambient air pollution exposure and incidence of kidney parenchyma cancer.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias Renais , Ozônio , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Carbono/análise , Carcinógenos/análise , Cobre/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Europa (Continente)/epidemiologia , Humanos , Ferro/análise , Rim , Neoplasias Renais/induzido quimicamente , Neoplasias Renais/epidemiologia , Níquel , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/toxicidade , Ozônio/análise , Material Particulado/análise , Material Particulado/toxicidade , Potássio/análise , Silício , Fuligem/análise , Enxofre/análise , Vanádio , Emissões de Veículos/análise , Zinco/análise
10.
Int J Cancer ; 149(11): 1887-1897, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34278567

RESUMO

Particulate matter air pollution and diesel engine exhaust have been classified as carcinogenic for lung cancer, yet few studies have explored associations with liver cancer. We used six European adult cohorts which were recruited between 1985 and 2005, pooled within the "Effects of low-level air pollution: A study in Europe" (ELAPSE) project, and followed for the incidence of liver cancer until 2011 to 2015. The annual average exposure to nitrogen dioxide (NO2 ), particulate matter with diameter <2.5 µm (PM2.5 ), black carbon (BC), warm-season ozone (O3 ), and eight elemental components of PM2.5 (copper, iron, zinc, sulfur, nickel, vanadium, silicon, and potassium) were estimated by European-wide hybrid land-use regression models at participants' residential addresses. We analyzed the association between air pollution and liver cancer incidence by Cox proportional hazards models adjusting for potential confounders. Of 330 064 cancer-free adults at baseline, 512 developed liver cancer during a mean follow-up of 18.1 years. We observed positive linear associations between NO2 (hazard ratio, 95% confidence interval: 1.17, 1.02-1.35 per 10 µg/m3 ), PM2.5 (1.12, 0.92-1.36 per 5 µg/m3 ), and BC (1.15, 1.00-1.33 per 0.5 10-5 /m) and liver cancer incidence. Associations with NO2 and BC persisted in two-pollutant models with PM2.5 . Most components of PM2.5 were associated with the risk of liver cancer, with the strongest associations for sulfur and vanadium, which were robust to adjustment for PM2.5 or NO2 . Our study suggests that ambient air pollution may increase the risk of liver cancer, even at concentrations below current EU standards.


Assuntos
Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , Neoplasias Hepáticas/etiologia , Adulto , Poluentes Atmosféricos/toxicidade , Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Europa (Continente)/epidemiologia , Feminino , Humanos , Incidência , Neoplasias Hepáticas/epidemiologia , Masculino , Pessoa de Meia-Idade , Tamanho da Partícula , Material Particulado/toxicidade , Modelos de Riscos Proporcionais
11.
Eur Respir J ; 57(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34088754

RESUMO

BACKGROUND: Long-term exposure to ambient air pollution has been linked to childhood-onset asthma, although evidence is still insufficient. Within the multicentre project Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE), we examined the associations of long-term exposures to particulate matter with a diameter <2.5 µm (PM2.5), nitrogen dioxide (NO2) and black carbon (BC) with asthma incidence in adults. METHODS: We pooled data from three cohorts in Denmark and Sweden with information on asthma hospital diagnoses. The average concentrations of air pollutants in 2010 were modelled by hybrid land-use regression models at participants' baseline residential addresses. Associations of air pollution exposures with asthma incidence were explored with Cox proportional hazard models, adjusting for potential confounders. RESULTS: Of 98 326 participants, 1965 developed asthma during a mean follow-up of 16.6 years. We observed associations in fully adjusted models with hazard ratios of 1.22 (95% CI 1.04-1.43) per 5 µg·m-3 for PM2.5, 1.17 (95% CI 1.10-1.25) per 10 µg·m-3 for NO2 and 1.15 (95% CI 1.08-1.23) per 0.5×10-5 m-1 for BC. Hazard ratios were larger in cohort subsets with exposure levels below the European Union and US limit values and possibly World Health Organization guidelines for PM2.5 and NO2. NO2 and BC estimates remained unchanged in two-pollutant models with PM2.5, whereas PM2.5 estimates were attenuated to unity. The concentration-response curves showed no evidence of a threshold. CONCLUSIONS: Long-term exposure to air pollution, especially from fossil fuel combustion sources such as motorised traffic, was associated with adult-onset asthma, even at levels below the current limit values.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Asma , Adulto , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Criança , Exposição Ambiental/análise , Europa (Continente) , Humanos , Incidência , Material Particulado/análise , Suécia
12.
Environ Res ; 193: 110568, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33278469

RESUMO

BACKGROUND: An association between long-term exposure to fine particulate matter (PM2.5) and lung cancer has been established in previous studies. PM2.5 is a complex mixture of chemical components from various sources and little is known about whether certain components contribute specifically to the associated lung cancer risk. The present study builds on recent findings from the "Effects of Low-level Air Pollution: A Study in Europe" (ELAPSE) collaboration and addresses the potential association between specific elemental components of PM2.5 and lung cancer incidence. METHODS: We pooled seven cohorts from across Europe and assigned exposure estimates for eight components of PM2.5 representing non-tail pipe emissions (copper (Cu), iron (Fe), and zinc (Zn)), long-range transport (sulfur (S)), oil burning/industry emissions (nickel (Ni), vanadium (V)), crustal material (silicon (Si)), and biomass burning (potassium (K)) to cohort participants' baseline residential address based on 100 m by 100 m grids from newly developed hybrid models combining air pollution monitoring, land use data, satellite observations, and dispersion model estimates. We applied stratified Cox proportional hazards models, adjusting for potential confounders (age, sex, calendar year, marital status, smoking, body mass index, employment status, and neighborhood-level socio-economic status). RESULTS: The pooled study population comprised 306,550 individuals with 3916 incident lung cancer events during 5,541,672 person-years of follow-up. We observed a positive association between exposure to all eight components and lung cancer incidence, with adjusted HRs of 1.10 (95% CI 1.05, 1.16) per 50 ng/m3 PM2.5 K, 1.09 (95% CI 1.02, 1.15) per 1 ng/m3 PM2.5 Ni, 1.22 (95% CI 1.11, 1.35) per 200 ng/m3 PM2.5 S, and 1.07 (95% CI 1.02, 1.12) per 200 ng/m3 PM2.5 V. Effect estimates were largely unaffected by adjustment for nitrogen dioxide (NO2). After adjustment for PM2.5 mass, effect estimates of K, Ni, S, and V were slightly attenuated, whereas effect estimates of Cu, Si, Fe, and Zn became null or negative. CONCLUSIONS: Our results point towards an increased risk of lung cancer in connection with sources of combustion particles from oil and biomass burning and secondary inorganic aerosols rather than non-exhaust traffic emissions. Specific limit values or guidelines targeting these specific PM2.5 components may prove helpful in future lung cancer prevention strategies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias Pulmonares , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Exposição Ambiental/análise , Europa (Continente)/epidemiologia , Humanos , Incidência , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/epidemiologia , Material Particulado/análise
13.
Res Rep Health Eff Inst ; (208): 1-127, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-36106702

RESUMO

INTRODUCTION: Epidemiological cohort studies have consistently found associations between long-term exposure to outdoor air pollution and a range of morbidity and mortality endpoints. Recent evaluations by the World Health Organization and the Global Burden of Disease study have suggested that these associations may be nonlinear and may persist at very low concentrations. Studies conducted in North America in particular have suggested that associations with mortality persisted at concentrations of particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) well below current air quality standards and guidelines. The uncertainty about the shape of the concentration-response function at the low end of the concentration distribution, related to the scarcity of observations in the lowest range, was the basis of the current project. Previous studies have focused on PM2.5, but increasingly associations with nitrogen dioxide (NO2) are being reported, particularly in studies that accounted for the fine spatial scale variation of NO2. Very few studies have evaluated the effects of long-term exposure to low concentrations of ozone (O3). Health effects of black carbon (BC), representing primary combustion particles, have not been studied in most large cohort studies of PM2.5. Cohort studies assessing health effects of particle composition, including elements from nontailpipe traffic emissions (iron, copper, and zinc) and secondary aerosol (sulfur) have been few in number and reported inconsistent results. The overall objective of our study was to investigate the shape of the relationship between long-term exposure to four pollutants (PM2.5, NO2, BC, and O3) and four broad health effect categories using a number of different methods to characterize the concentration-response function (i.e., linear, nonlinear, or threshold). The four health effect categories were (1) natural- and cause-specific mortality including cardiovascular and nonmalignant as well as malignant respiratory and diabetes mortality; and morbidity measured as (2) coronary and cerebrovascular events; (3) lung cancer incidence; and (4) asthma and chronic obstructive pulmonary disease (COPD) incidence. We additionally assessed health effects of PM2.5 composition, specifically the copper, iron, zinc, and sulfur content of PM2,5. METHODS: We focused on analyses of health effects of air pollutants at low concentrations, defined as less than current European Union (EU) Limit Values, U.S. Environmental Protection Agency (U.S. EPA), National Ambient Air Quality Standards (NAAQS), and/or World Health Organization (WHO) Air Quality Guideline values for PM2.5, NO2, and O3. We address the health effects at low air pollution levels by performing new analyses within selected cohorts of the ESCAPE study (European Study of Cohorts for Air Pollution Effects; Beelen et al. 2014a) and within seven very large European administrative cohorts. By combining well-characterized ESCAPE cohorts and large administrative cohorts in one study the strengths and weaknesses of each approach can be addressed. The large administrative cohorts are more representative of national or citywide populations, have higher statistical power, and can efficiently control for area-level confounders, but have fewer possibilities to control for individual-level confounders. The ESCAPE cohorts have detailed information on individual confounders, as well as country-specific information on area-level confounding. The data from the seven included ESCAPE cohorts and one additional non-ESCAPE cohort have been pooled and analyzed centrally. More than 300,000 adults were included in the pooled cohort from existing cohorts in Sweden, Denmark, Germany, the Netherlands, Austria, France, and Italy. Data from the administrative cohorts have been analyzed locally, without transfer to a central database. Privacy regulations prevented transfer of data from administrative cohorts to a central database. More than 28 million adults were included from national administrative cohorts in Belgium, Denmark, England, the Netherlands, Norway, and Switzerland as well as an administrative cohort in Rome, Italy. We developed central exposure assessment using Europewide hybrid land use regression (LUR) models, which incorporated European routine monitoring data for PM2.5, NO2, and O3, and ESCAPE monitoring data for BC and PM2.5 composition, land use, and traffic data supplemented with satellite observations and chemical transport model estimates. For all pollutants, we assessed exposure at a fine spatial scale, 100 × 100 m grids. These models have been applied to individual addresses of all cohorts including the administrative cohorts. In sensitivity analyses, we applied the PM2.5 models developed within the companion HEI-funded Canadian MAPLE study (Brauer et al. 2019) and O3 exposures on a larger spatial scale for comparison with previous studies. Identification of outcomes included linkage with mortality, cancer incidence, hospital discharge registries, and physician-based adjudication of cases. We analyzed natural-cause, cardiovascular, ischemic heart disease, stroke, diabetes, cardiometabolic, respiratory, and COPD mortality. We also analyzed lung cancer incidence, incidence of coronary and cerebrovascular events, and incidence of asthma and COPD (pooled cohort only). We applied the Cox proportional hazard model with increasing control for individual- and area-level covariates to analyze the associations between air pollution and mortality and/or morbidity for both the pooled cohort and the individual administrative cohorts. Age was used as the timescale because of evidence that this results in better adjustment for potential confounding by age. Censoring occurred at the time of the event of interest, death from other causes, emigration, loss to follow-up for other reasons, or at the end of follow-up, whichever came first. A priori we specified three confounder models, following the modeling methods of the ESCAPE study. Model 1 included only age (time axis), sex (as strata), and calendar year of enrollment. Model 2 added individual-level variables that were consistently available in the cohorts contributing to the pooled cohort or all variables available in the administrative cohorts, respectively. Model 3 further added area-level socioeconomic status (SES) variables. A priori model 3 was selected as the main model. All analyses in the pooled cohort were stratified by subcohort. All analyses in the administrative cohorts accounted for clustering of the data in neighborhoods by adjusting the variance of the effect estimates. The main exposure variable we analyzed was derived from the Europewide hybrid models based on 2010 monitoring data. Sensitivity analyses were conducted using earlier time periods, time-varying exposure analyses, local exposure models, and the PM2.5 models from the Canadian MAPLE project. We first specified linear single-pollutant models. Two-pollutant models were specified for all combinations of the four main pollutants. Two-pollutant models for particle composition were analyzed with PM2.5 and NO2 as the second pollutant. We then investigated the shape of the concentration-response function using natural splines with two, three, and four degrees of freedom; penalized splines with the degrees of freedom determined by the algorithm and shape-constrained health impact functions (SCHIF) using confounder model 3. Additionally, we specified linear models in subsets of the concentration range, defined by removing concentrations above a certain value from the analysis, such as for PM2.5 25 µg/m3 (EU limit value), 20, 15, 12 µg/m3 (U.S. EPA National Ambient Air Quality Standard), and 10 µg/m3 (WHO Air Quality Guideline value). Finally, threshold models were evaluated to investigate whether the associations persisted below specific concentration values. For PM2.5, we evaluated 10, 7.5, and 5 µg/m3 as potential thresholds. Performance of threshold models versus the corresponding no-threshold linear model were evaluated using the Akaike information criterion (AIC). RESULTS: In the pooled cohort, virtually all subjects in 2010 had PM2.5 and NO2 annual average exposures below the EU limit values (25 µg/m3 and 40 µg/m3, respectively). More than 50,000 had a residential PM2.5 exposure below the U.S. EPA NAAQS (12 µg/m3). More than 25,000 subjects had a residential PM2.5 exposure below the WHO guideline (10 µg/m3). We found significant positive associations between PM2.5, NO2, and BC and natural-cause, respiratory, cardiovascular, and diabetes mortality. In our main model, the hazard ratios (HRs) (95% [confidence interval] CI) were 1.13 (CI = 1.11, 1.16) for an increase of 5 µg/m3 PM2.5, 1.09 (CI = 1.07, 1.10) for an increase of 10 µg/m3 NO2, and 1.08 (CI = 1.06, 1.10) for an increase of 0.5 × 10-5/m BC for natural-cause mortality. The highest HRs were found for diabetes mortality. Associations with O3 were negative, both in the fine spatial scale of the main ELAPSE model and in large spatial scale exposure models. For PM2.5, NO2, and BC, we generally observed a supralinear association with steeper slopes at low exposures and no evidence of a concentration below which no association was found. Subset analyses further confirmed that these associations remained at low levels: below 10 µg/m3 for PM2.5 and 20 µg/m3 for NO2. HRs were similar to the full cohort HRs for subjects with exposures below the EU limit values for PM2.5 and NO2, the U.S. NAAQS values for PM2.5, and the WHO guidelines for PM2.5 and NO2. The mortality associations were robust to alternative specifications of exposure, including different time periods, PM2.5 from the MAPLE project, and estimates from the local ESCAPE model. Time-varying exposure natural spline analyses confirmed associations at low pollution levels. HRs in two-pollutant models were attenuated but remained elevated and statistically significant forPM2.5 and NO2. In two-pollutant models of PM2.5 and NO2 HRs for natural-cause mortality were 1.08 (CI = 1.05, 1.11) for PM2.5 and 1.05 (CI = 1.03, 1.07) for NO2. Associations with O3 were attenuated but remained negative in two-pollutant models with NO2, BC, and PM2.5. We found significant positive associations between PM2.5, NO2, and BC and incidence of stroke and asthma and COPD hospital admissions. Furthermore, NO2 was significantly related to acute coronary heart disease and PM2.5 was significantly related to lung cancer incidence. We generally observed linear to supralinear associations with no evidence of a threshold, with the exception of the association between NO2 and acute coronary heart disease, which was sublinear. Subset analyses documented that associations remained even with PM2.5 below 20 µg/m3 and possibly 12 µg/m3. Associations remained even when NO2 was below 30 µg/m3 and in some cases 20 µg/m3. In two-pollutant models, NO2 was most consistently associated with acute coronary heart disease, stroke, asthma, and COPD hospital admissions. PM2.5 was not associated with these outcomes in two-pollutant models with NO2. PM2.5 was the only pollutant that was associated with lung cancer incidence in two-pollutant models. Associations with O3 were negative though generally not statistically significant. In the administrative cohorts, virtually all subjects in 2010 had PM2.5 and NO2 annual average exposures below the EU limit values. More than 3.9 million subjects had a residential PM2.5 exposure below the U.S. EPA NAAQS (12 µg/m3) and more than 1.9 million had residential PM2.5 exposures below the WHO guideline (10 µg/m3). We found significant positive associations between PM2.5, NO2, and BC and natural-cause, respiratory, cardiovascular, and lung cancer mortality, with moderate to high heterogeneity between cohorts. We found positive but statistically nonsignificant associations with diabetes mortality. In our main model meta-analysis, the HRs (95% CI) for natural-cause mortality were 1.05 (CI = 1.02, 1.09) for an increase of 5 µg/m3 PM2.5, 1.04 (CI = 1.02, 1.07) for an increase of 10 µg/m3 NO2, and 1.04 (CI = 1.02, 1.06) for an increase of 0.5 × 10-5/m BC, and 0.95 (CI = 0.93, 0.98) for an increase of 10 µg/m3 O3. The shape of the concentration-response functions differed between cohorts, though the associations were generally linear to supralinear, with no indication of a level below which no associations were found. Subset analyses documented that these associations remained at low levels: below 10 µg/m3 for PM2.5 and 20 µg/m3 for NO2. BC and NO2 remained significantly associated with mortality in two-pollutant models with PM2.5 and O3. The PM2.5 HR attenuated to unity in a two-pollutant model with NO2. The negative O3 association was attenuated to unity and became nonsignificant. The mortality associations were robust to alternative specifications of exposure, including time-varying exposure analyses. Time-varying exposure natural spline analyses confirmed associations at low pollution levels. Effect estimates in the youngest participants (<65 years at baseline) were much larger than in the elderly (>65 years at baseline). Effect estimates obtained with the ELAPSE PM2.5 model did not differ from the MAPLE PM2.5 model on average, but in individual cohorts, substantial differences were found. CONCLUSIONS: Long-term exposure to PM2.5, NO2, and BC was positively associated with natural-cause and cause-specific mortality in the pooled cohort and the administrative cohorts. Associations were found well below current limit values and guidelines for PM2.5 and NO2. Associations tended to be supralinear, with steeper slopes at low exposures with no indication of a threshold. Two-pollutant models documented the importance of characterizing the ambient mixture with both NO2 and PM2.5. We mostly found negative associations with O3. In two-pollutant models with NO2, the negative associations with O3 were attenuated to essentially unity in the mortality analysis of the administrative cohorts and the incidence analyses in the pooled cohort. In the mortality analysis of the pooled cohort, significant negative associations with O3 remained in two-pollutant models. Long-term exposure to PM2.5, NO2, and BC was also positively associated with morbidity outcomes in the pooled cohort. For stroke, asthma, and COPD, positive associations were found for PM2.5, NO2, and BC. For acute coronary heart disease, an increased HR was observed for NO2. For lung cancer, an increased HR was found only for PM2.5. Associations mostly showed steeper slopes at low exposures with no indication of a threshold.


Assuntos
Poluentes Atmosféricos , Asma , Doença das Coronárias , Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Acidente Vascular Cerebral , Adulto , Idoso , Poluentes Atmosféricos/efeitos adversos , Canadá , Cobre/análise , Exposição Ambiental/efeitos adversos , Humanos , Incidência , Dióxido de Nitrogênio/efeitos adversos , Fuligem/análise , Enxofre/análise , Estados Unidos , Zinco/análise
14.
Environ Sci Technol ; 54(24): 15698-15709, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33237771

RESUMO

We developed Europe-wide models of long-term exposure to eight elements (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) in particulate matter with diameter <2.5 µm (PM2.5) using standardized measurements for one-year periods between October 2008 and April 2011 in 19 study areas across Europe, with supervised linear regression (SLR) and random forest (RF) algorithms. Potential predictor variables were obtained from satellites, chemical transport models, land-use, traffic, and industrial point source databases to represent different sources. Overall model performance across Europe was moderate to good for all elements with hold-out-validation R-squared ranging from 0.41 to 0.90. RF consistently outperformed SLR. Models explained within-area variation much less than the overall variation, with similar performance for RF and SLR. Maps proved a useful additional model evaluation tool. Models differed substantially between elements regarding major predictor variables, broadly reflecting known sources. Agreement between the two algorithm predictions was generally high at the overall European level and varied substantially at the national level. Applying the two models in epidemiological studies could lead to different associations with health. If both between- and within-area exposure variability are exploited, RF may be preferred. If only within-area variability is used, both methods should be interpreted equally.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Europa (Continente) , Modelos Lineares , Material Particulado/análise , Zinco/análise
15.
Environ Res ; 188: 109854, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32798957

RESUMO

Short-term exposure to air pollutants has been extensively related to daily mortality, however most of the evidence comes from studies conducted in major cities, and little is known on the extent of the spatial heterogeneity in the effects within areas including both urban and non-urban settings. We aimed to investigate the short-term association of air pollutants with daily cause-specific mortality in the Stockholm county, and to test whether an association exists also outside the metropolitan area. We used a spatiotemporal random forest model to predict daily concentrations of fine and inhalable particulate matter (PM2.5 and PM10), nitrogen dioxide (NO2) and ozone (O3) at 1-km spatial resolution over Sweden for 2005-2016. We collected data on daily mortality for each small area for market statistics (SAMS) of the Stockholm county, to which we matched daily exposures to air pollutants and air temperature. We applied a case-crossover design to investigate the short-term association between the four pollutants and mortality from non-accidental, cardiovascular and respiratory causes. We compared the associations in and out the Stockholm urban area, by SAMS population density and across the 26 municipalities of the county. We found weak effects of most air pollutants on cause-specific mortality in the full year analysis, with estimates much larger and significant only during the warmer months (April to September): non-accidental mortality increased by 4.58% (95% confidence interval - 95% CI: 0.89%, 8.41%) and by 2.21% (95% CI: 0.71%, 3.73%) per 10 µg/m3 increase in lag 0-1 PM2.5 and O3, respectively. Associations were in general higher in the Stockholm city and in SAMS with high population density. When comparing the 26 municipalities, we didn't detect a significant heterogeneity in the short-term associations with air pollutants. In conclusion, we found a suggestion of a harmful role of air pollution also in non-urban areas, but the study was underpowered to draw firm conclusions. We consider this study as a pilot to investigate the spatial heterogeneity of the association between daily air pollution and mortality at the national level in Sweden.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Cidades , Mortalidade , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/toxicidade , Ozônio/análise , Ozônio/toxicidade , Material Particulado/análise , Material Particulado/toxicidade , Análise Espaço-Temporal , Suécia/epidemiologia , Fatores de Tempo
16.
Am J Respir Crit Care Med ; 195(10): 1373-1383, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27901618

RESUMO

RATIONALE: The evidence supporting an association between traffic-related air pollution exposure and incident childhood asthma is inconsistent and may depend on genetic factors. OBJECTIVES: To identify gene-environment interaction effects on childhood asthma using genome-wide single-nucleotide polymorphism (SNP) data and air pollution exposure. Identified loci were further analyzed at epigenetic and transcriptomic levels. METHODS: We used land use regression models to estimate individual air pollution exposure (represented by outdoor NO2 levels) at the birth address and performed a genome-wide interaction study for doctors' diagnoses of asthma up to 8 years in three European birth cohorts (n = 1,534) with look-up for interaction in two separate North American cohorts, CHS (Children's Health Study) and CAPPS/SAGE (Canadian Asthma Primary Prevention Study/Study of Asthma, Genetics and Environment) (n = 1,602 and 186 subjects, respectively). We assessed expression quantitative trait locus effects in human lung specimens and blood, as well as associations among air pollution exposure, methylation, and transcriptomic patterns. MEASUREMENTS AND MAIN RESULTS: In the European cohorts, 186 SNPs had an interaction P < 1 × 10-4 and a look-up evaluation of these disclosed 8 SNPs in 4 loci, with an interaction P < 0.05 in the large CHS study, but not in CAPPS/SAGE. Three SNPs within adenylate cyclase 2 (ADCY2) showed the same direction of the interaction effect and were found to influence ADCY2 gene expression in peripheral blood (P = 4.50 × 10-4). One other SNP with P < 0.05 for interaction in CHS, rs686237, strongly influenced UDP-Gal:betaGlcNAc ß-1,4-galactosyltransferase, polypeptide 5 (B4GALT5) expression in lung tissue (P = 1.18 × 10-17). Air pollution exposure was associated with differential discs, large homolog 2 (DLG2) methylation and expression. CONCLUSIONS: Our results indicated that gene-environment interactions are important for asthma development and provided supportive evidence for interaction with air pollution for ADCY2, B4GALT5, and DLG2.


Assuntos
Poluição do Ar/estatística & dados numéricos , Asma/epidemiologia , Interação Gene-Ambiente , Emissões de Veículos , Asma/genética , Criança , Europa (Continente)/epidemiologia , Feminino , Seguimentos , Humanos , Masculino , América do Norte/epidemiologia , Polimorfismo de Nucleotídeo Único
17.
Epidemiology ; 28(2): 172-180, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27922535

RESUMO

BACKGROUND: Epidemiologic evidence on the association between short-term exposure to ultrafine particles and mortality is weak, due to the lack of routine measurements of these particles and standardized multicenter studies. We investigated the relationship between ultrafine particles and particulate matter (PM) and daily mortality in eight European urban areas. METHODS: We collected daily data on nonaccidental and cardiorespiratory mortality, particle number concentrations (as proxy for ultrafine particle number concentration), fine and coarse PM, gases and meteorologic parameters in eight urban areas of Finland, Sweden, Denmark, Germany, Italy, Spain, and Greece, between 1999 and 2013. We applied city-specific time-series Poisson regression models and pooled them with random-effects meta-analysis. RESULTS: We estimated a weak, delayed association between particle number concentration and nonaccidental mortality, with mortality increasing by approximately 0.35% per 10,000 particles/cm increases in particle number concentration occurring 5 to 7 days before death. A similar pattern was found for cause-specific mortality. Estimates decreased after adjustment for fine particles (PM2.5) or nitrogen dioxide (NO2). The stronger association found between particle number concentration and mortality in the warmer season (1.14% increase) became null after adjustment for other pollutants. CONCLUSIONS: We found weak evidence of an association between daily ultrafine particles and mortality. Further studies are required with standardized protocols for ultrafine particle data collection in multiple European cities over extended study periods.


Assuntos
Poluição do Ar/estatística & dados numéricos , Cidades , Exposição Ambiental/estatística & dados numéricos , Mortalidade , Dióxido de Nitrogênio , Material Particulado , População Urbana/estatística & dados numéricos , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Dinamarca , Europa (Continente) , Feminino , Finlândia , Alemanha , Grécia , Humanos , Lactente , Recém-Nascido , Itália , Masculino , Pessoa de Meia-Idade , Distribuição de Poisson , Análise de Regressão , Espanha , Suécia , Fatores de Tempo , Adulto Jovem
18.
Am J Respir Crit Care Med ; 193(2): 171-7, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26397124

RESUMO

RATIONALE: Exposure to air pollution during infancy has been related to lung function decrements in 8-year-old children, but whether the negative effects remain into adolescence is unknown. OBJECTIVES: To investigate the relationship between long-term air pollution exposure and lung function up to age 16 years. METHODS: A total of 2,278 children from the Swedish birth cohort BAMSE (Children, Allergy, Milieu, Stockholm, Epidemiological Survey) performed spirometry at age 16 years. Levels of outdoor air pollution from local road traffic were estimated (nitrogen oxides [NOx] and particulate matter with an aerodynamic diameter of <10 µm [PM10]) for residential, daycare, and school addresses during the lifetime using dispersion modeling. Associations between exposure in different time windows and spirometry indexes were analyzed by linear regression and mixed effect models. MEASUREMENTS AND MAIN RESULTS: Exposure to traffic-related air pollution during the first year of life was associated with FEV1 at age 16 years of -15.8 ml (95% confidence interval [CI], -33.6 to 2.0 for a 10 µg/m(3) difference in NOx), predominately in males (-30.4 ml; 95% CI, -59.1 to -1.7), and in subjects not exposed to maternal smoking during pregnancy or infancy. Later exposures appeared to have had an additional negative effect. High exposure during the first year of life was also associated with odds ratios for FEV1 and FVC less than the lower limit of normal (LLN) (defined as a z-score < -1.64 SD) of 3.8 (95% CI, 1.3-10.9) and of 4.3 (95% CI, 1.2-15.0), respectively. The results for PM10 were similar to those for NOx. CONCLUSIONS: Exposure to traffic-related air pollution in infancy is negatively associated with FEV1 at age 16 years, leading to increased risk of clinically important deficits.


Assuntos
Poluição do Ar/efeitos adversos , Volume Expiratório Forçado/efeitos dos fármacos , Material Particulado/efeitos adversos , Emissões de Veículos/análise , Adolescente , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental/métodos , Feminino , Humanos , Lactente , Masculino , Estudos Prospectivos , Distribuição por Sexo , Espirometria , Suécia/epidemiologia , Tempo
19.
Eur Respir J ; 48(3): 674-82, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27338189

RESUMO

Epidemiological evidence on the associations between exposure to ultrafine particles (UFP), with aerodynamic electrical mobility diameters <100 nm, and health is limited. We gathered data on UFP from five European cities within 2001-2011 to investigate associations between short-term changes in concentrations and respiratory hospitalisations.We applied city-specific Poisson regression models and combined city-specific estimates to obtain pooled estimates. We evaluated the sensitivity of our findings to co-pollutant adjustment and investigated effect modification patterns by period of the year, age at admission and specific diagnoses.Our results for the whole time period do not support an association between UFP and respiratory hospitalisations, although we found suggestive associations among those 0-14 years old. We nevertheless report consistent adverse effect estimates during the warm period of the year, statistically significant after lag 2 when an increase by 10 000 particles per cm(3) was associated with a 4.27% (95% CI 1.68-6.92%) increase in hospitalisations. These effect estimates were robust to particles' mass or gaseous pollutants adjustment.Considering that our findings during the warm period may reflect better exposure assessment and that the main source of non-soluble UFP in urban areas is traffic, our results call for improved regulation of traffic emissions.


Assuntos
Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , Hospitalização/estatística & dados numéricos , Material Particulado/efeitos adversos , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Monitoramento Ambiental , Europa (Continente) , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Tamanho da Partícula , Distribuição de Poisson , Pneumologia , Análise de Regressão , Temperatura , Adulto Jovem
20.
Epidemiology ; 27(5): 663-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27258325

RESUMO

BACKGROUND: Exposure to ground level ozone (O3) is a public health problem associated with a range of risks across population subgroups. Our aim was to investigate the role of previous cardiovascular diseases (CVDs) in mortality related to short-term O3 exposure. METHODS: Deaths between 1990 and 2010 in Stockholm County were matched with previous hospitalizations in Swedish registries. An urban background monitoring station provided hourly values of air quality data, from which we calculated 8-hour running averages and daily 8-hour maximum. We analyzed associations between daily O3 concentrations and mortality among persons with and without previous CVD hospitalization with a generalized additive model adjusted for time trend, influenza, and weather. We also performed two-pollutant models. RESULTS: There were 302,283 nontrauma-related deaths, out of which 196,916 had previous CVD hospitalization. The mean concentration of daily maximum 8-hour O3 was 62.9 µg/m. An average 10 µg/m increase in the same and preceding day was associated with an increased mortality of 1.72% (95% confidence interval: 0.44%, 3.02%) in those with prior admission for acute myocardial infarction (AMI), which was more than three times higher than for those with no previous AMI (0.50, 95% confidence interval: 0.10%, 0.89%, P value for interaction 0.098). The association between O3 and mortality remained essentially unchanged in two-pollutant models with NO2, NOx, and PM10. CONCLUSIONS: Our study indicates that short-term exposure to O3 is associated with increased mortality in those with a previous hospitalization for AMI.


Assuntos
Doenças Cardiovasculares/epidemiologia , Exposição Ambiental/estatística & dados numéricos , Mortalidade , Infarto do Miocárdio/epidemiologia , Ozônio , Adolescente , Adulto , Idoso , Poluição do Ar , Estudos de Casos e Controles , Causas de Morte , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dióxido de Nitrogênio , Material Particulado , Suécia/epidemiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA