Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
J Infect Dis ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041851

RESUMO

Bone and joint infections (BJIs) are difficult to treat and affect a growing number of patients, in which relapses are observed in 10-20% of the case. These relapses, which call for prolonged antibiotic treatment and increase resistance emergence risk, may originate from ill understood adaptation of the pathogen to the host. Here, we investigated three pairs of Escherichia coli strains from BJI cases and their relapses to unravel in-patient adaptation. Whole genome comparison presented evidence for positive selection and phenotypic characterization showed that biofilm formation remained unchanged, contrary to what is usually described in such cases. Although virulence was not modified, we identified the loss of two virulence factors contributing to immune system evasion in one of the studied strains. Other strategies, including global growth optimization and colicin production, likely allowed the strains to outcompete competitors. This work highlights the variety of strategies allowing in-patient adaptation in BJIs.

2.
Mol Microbiol ; 113(3): 659-671, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31975449

RESUMO

How, when and why the transition between cell envelopes with one membrane (Gram-positives or monoderms) and two (Gram-negative or diderms) occurred in Bacteria is a key unanswered question in evolutionary biology. Different hypotheses have been put forward, suggesting that either the monoderm or the diderm phenotype is ancestral. The existence of diderm members in the classically monoderm Firmicutes challenges the Gram-positive/Gram-negative divide and provides a great opportunity to tackle the issue. In this review, we present current knowledge on the diversity of bacterial cell envelopes, including these atypical Firmicutes. We discuss how phylogenomic analysis supports the hypothesis that the diderm cell envelope architecture is an ancestral character in the Firmicutes, and that the monoderm phenotype in this phylum arose multiple times independently by loss of the outer membrane. Given the overwhelming distribution of diderm phenotypes with respect to monoderm ones, this scenario likely extends to the ancestor of all bacteria. Finally, we discuss the recent development of genetic tools for Veillonella parvula, a diderm Firmicute member of the human microbiome, which indicates it as an emerging new experimental model to investigate fundamental aspects of the diderm/monoderm transition.


Assuntos
Membrana Celular/genética , Bactérias Gram-Negativas/ultraestrutura , Bactérias Gram-Positivas/ultraestrutura , Bactérias/genética , Bactérias/metabolismo , Evolução Biológica , Membrana Celular/ultraestrutura , Parede Celular/genética , Parede Celular/ultraestrutura , Evolução Molecular , Firmicutes/classificação , Firmicutes/genética , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/metabolismo , Lipopolissacarídeos , Filogenia
3.
J Bacteriol ; 202(21)2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32817093

RESUMO

The Negativicutes are a clade of the Firmicutes that have retained the ancestral diderm character and possess an outer membrane. One of the best studied Negativicutes, Veillonella parvula, is an anaerobic commensal and opportunistic pathogen inhabiting complex human microbial communities, including the gut and the dental plaque microbiota. Whereas the adhesion and biofilm capacities of V. parvula are expected to be crucial for its maintenance and development in these environments, studies of V. parvula adhesion have been hindered by the lack of efficient genetic tools to perform functional analyses in this bacterium. Here, we took advantage of a recently described naturally transformable V. parvula isolate, SKV38, and adapted tools developed for the closely related Clostridia spp. to perform random transposon and targeted mutagenesis to identify V. parvula genes involved in biofilm formation. We show that type V secreted autotransporters, typically found in diderm bacteria, are the main determinants of V. parvula autoaggregation and biofilm formation and compete with each other for binding either to cells or to surfaces, with strong consequences for V. parvula biofilm formation capacity. The identified trimeric autotransporters have an original structure compared to classical autotransporters identified in Proteobacteria, with an additional C-terminal domain. We also show that inactivation of the gene coding for a poorly characterized metal-dependent phosphohydrolase HD domain protein conserved in the Firmicutes and their closely related diderm phyla inhibits autotransporter-mediated biofilm formation. This study paves the way for further molecular characterization of V. parvula interactions with other bacteria and the host within complex microbiota environments.IMPORTANCEVeillonella parvula is an anaerobic commensal and opportunistic pathogen whose ability to adhere to surfaces or other bacteria and form biofilms is critical for it to inhabit complex human microbial communities such as the gut and oral microbiota. Although the adhesive capacity of V. parvula has been previously described, very little is known about the underlying molecular mechanisms due to a lack of genetically amenable Veillonella strains. In this study, we took advantage of a naturally transformable V. parvula isolate and newly adapted genetic tools to identify surface-exposed adhesins called autotransporters as the main molecular determinants of adhesion in this bacterium. This work therefore provides new insights on an important aspect of the V. parvula lifestyle, opening new possibilities for mechanistic studies of the contribution of biofilm formation to the biology of this major commensal of the oral-digestive tract.


Assuntos
Adesinas Bacterianas , Aderência Bacteriana/genética , Biofilmes/crescimento & desenvolvimento , Sistemas de Secreção Tipo V , Veillonella/fisiologia , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Sistemas de Secreção Tipo V/genética , Sistemas de Secreção Tipo V/metabolismo
4.
J Bacteriol ; 201(18)2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30833358

RESUMO

Bacteroides thetaiotaomicron is a prominent anaerobic member of the healthy human gut microbiota. While the majority of functional studies on B. thetaiotaomicron addressed its impact on the immune system and the utilization of diet polysaccharides, B. thetaiotaomicron biofilm capacity and its contribution to intestinal colonization are still poorly characterized. We tested the natural adhesion of 34 B. thetaiotaomicron isolates and showed that although biofilm capacity is widespread among B. thetaiotaomicron strains, this phenotype is masked or repressed in the widely used reference strain VPI 5482. Using transposon mutagenesis followed by a biofilm positive-selection procedure, we identified VPI 5482 mutants with increased biofilm capacity corresponding to an alteration in the C-terminal region of BT3147, encoded by the BT3148-BT3147 locus, which displays homology with Mfa-like type V pili found in many Bacteroidetes We show that BT3147 is exposed on the B. thetaiotaomicron surface and that BT3147-dependent adhesion also requires BT3148, suggesting that BT3148 and BT3147 correspond to the anchor and stalk subunits of a new type V pilus involved in B. thetaiotaomicron adhesion. This study therefore introduces B. thetaiotaomicron as a model to study proteinaceous adhesins and biofilm-related phenotypes in this important intestinal symbiont.IMPORTANCE Although the gut anaerobe Bacteroides thetaiotaomicron is a prominent member of the healthy human gut microbiota, little is known about its capacity to adhere to surfaces and form biofilms. Here, we identify that alteration of a surface-exposed protein corresponding to a type of pili found in many Bacteroidetes increases B. thetaiotaomicron biofilm formation. This study lays the ground for establishing this bacterium as a model organism for in vitro and in vivo studies of biofilm-related phenotypes in gut anaerobes.


Assuntos
Bacteroides thetaiotaomicron/fisiologia , Biofilmes/crescimento & desenvolvimento , Fímbrias Bacterianas/fisiologia , Animais , Aderência Bacteriana/fisiologia , Microbioma Gastrointestinal/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H
5.
Artigo em Inglês | MEDLINE | ID: mdl-30936108

RESUMO

Formation of bacterial biofilms is a major health threat due to their high levels of tolerance to multiple antibiotics and the presence of persisters responsible for infection relapses. We previously showed that a combination of starvation and induction of SOS response in biofilm led to increased levels of persisters and biofilm tolerance to fluoroquinolones. In this study, we hypothesized that inhibition of the SOS response may be an effective strategy to target biofilms and fluoroquinolone persister cells. We tested the survival of Escherichia coli biofilms to different classes of antibiotics in starved and nonstarved conditions and in the presence of zinc acetate, a SOS response inhibitor. We showed that zinc acetate potentiates, albeit moderately, the activity of fluoroquinolones against E. coli persisters in starved biofilms. The efficacy of zinc acetate to increase fluoroquinolone activity, particularly that of tosufloxacin, suggests that such a combination may be a potential strategy for treating biofilm-related bacterial infections.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Fluoroquinolonas/farmacologia , Acetato de Zinco/farmacologia , Sinergismo Farmacológico , Escherichia coli/crescimento & desenvolvimento , Infecções por Escherichia coli/microbiologia , Humanos , Naftiridinas/farmacologia
6.
Environ Microbiol ; 18(12): 5228-5248, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27696649

RESUMO

Initial adhesion of bacterial cells to surfaces or host tissues is a key step in colonisation and biofilm formation processes, and is mediated by cell surface appendages. It was previously demonstrated that Escherichia coli K-12 possesses an arsenal of silenced chaperone-usher fimbriae that were functional when constitutively expressed. Among them, production of prevalent Yad fimbriae induces adhesion to abiotic surfaces. Functional characterisation of Yad fimbriae were undertook, and YadN was identified as the most abundant and potential major pilin, and YadC as the potential tip-protein of Yad fimbriae. It was showed that Yad production participates to binding of E. coli K-12 to human eukaryotic cells (Caco-2) and inhibits macrophage phagocytosis, but also enhances E. coli K-12 binding to xylose, a major component of the plant cell wall, through its tip-lectin YadC. Consistently, it was demonstrated that Yad production provides E. coli with a competitive advantage in colonising corn seed rhizospheres. The latter phenotype is correlated with induction of Yad expression at temperatures below 37°C, and under anaerobic conditions, through a complex regulatory network. Taken together, these results suggest that Yad fimbriae are versatile adhesins that beyond potential capacities to modulate host-pathogen interactions might contribute to E. coli environmental persistence.


Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia coli K12/fisiologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/fisiologia , Zea mays/microbiologia , Aderência Bacteriana , Células CACO-2 , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Humanos , Sementes/microbiologia
7.
PLoS Genet ; 9(1): e1003144, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23300476

RESUMO

High levels of antibiotic tolerance are a hallmark of bacterial biofilms. In contrast to well-characterized inherited antibiotic resistance, molecular mechanisms leading to reversible and transient antibiotic tolerance displayed by biofilm bacteria are still poorly understood. The physiological heterogeneity of biofilms influences the formation of transient specialized subpopulations that may be more tolerant to antibiotics. In this study, we used random transposon mutagenesis to identify biofilm-specific tolerant mutants normally exhibited by subpopulations located in specialized niches of heterogeneous biofilms. Using Escherichia coli as a model organism, we demonstrated, through identification of amino acid auxotroph mutants, that starved biofilms exhibited significantly greater tolerance towards fluoroquinolone ofloxacin than their planktonic counterparts. We demonstrated that the biofilm-associated tolerance to ofloxacin was fully dependent on a functional SOS response upon starvation to both amino acids and carbon source and partially dependent on the stringent response upon leucine starvation. However, the biofilm-specific ofloxacin increased tolerance did not involve any of the SOS-induced toxin-antitoxin systems previously associated with formation of highly tolerant persisters. We further demonstrated that ofloxacin tolerance was induced as a function of biofilm age, which was dependent on the SOS response. Our results therefore show that the SOS stress response induced in heterogeneous and nutrient-deprived biofilm microenvironments is a molecular mechanism leading to biofilm-specific high tolerance to the fluoroquinolone ofloxacin.


Assuntos
Biofilmes , Elementos de DNA Transponíveis/genética , Farmacorresistência Bacteriana , Tolerância a Medicamentos , Escherichia coli , Aminoácidos/genética , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Tolerância a Medicamentos/genética , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Fluoroquinolonas/farmacologia , Mutagênese , Ofloxacino/farmacologia , Plâncton/efeitos dos fármacos , Plâncton/genética , Resposta SOS em Genética , Inanição
8.
J Antimicrob Chemother ; 70(6): 1704-12, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25712314

RESUMO

OBJECTIVES: Treatment of catheter-related bloodstream infections (CRBSI) is hampered by the characteristic tolerance of bacterial biofilms towards antibiotics. Our objective was to study the effect of the combination of antibiotics and the alkaline amino acid l-arginine or the cation chelator EDTA on the bacterial killing of in vitro biofilms formed by an array of clinical strains responsible for CRBSI and representative of epidemiologically relevant bacterial species. METHODS: Among 32 strains described in a previous clinical study, we focused on the most antibiotic-tolerant strains including CoNS (n = 4), Staphylococcus aureus (n = 4), Enterococcus faecalis (n = 2), Pseudomonas aeruginosa (n = 4) and Enterobacteriaceae (n = 4). We used an in vitro biofilm model (96-well plate assay) to study biofilm tolerance and tested various combinations of antibiotics and non-antibiotic adjuvants. Gentamicin, amikacin or vancomycin was combined with disodium EDTA or l-arginine for 24 h to reproduce the antibiotic lock therapy (ALT) approach. Killing of biofilm bacteria was measured by cfu quantification after a vigorous step of pipetting up and down in order to detach all biofilm bacteria from the surface of the wells. RESULTS: Both of our adjuvant strategies significantly increased the effect of antibiotics against biofilms formed by Gram-positive and Gram-negative bacterial pathogens. The combination of gentamicin + EDTA was active against all tested strains apart from one P. aeruginosa. The combination of gentamicin + l-arginine was active against most of the tested strains with the notable exception of CoNS for which no potentiation was observed. We also demonstrated that amikacin + EDTA was active against Gram-negative bacteria and that vancomycin + EDTA was active against Gram-positive bacteria. CONCLUSIONS: The addition of EDTA enhanced the activity of gentamicin, amikacin and vancomycin against biofilms formed by a wide spectrum of bacterial strains responsible for CRBSI.


Assuntos
Anti-Infecciosos/farmacologia , Arginina/farmacologia , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Quelantes/farmacologia , Amicacina/farmacologia , Bactérias/isolamento & purificação , Infecções Relacionadas a Cateter/microbiologia , Contagem de Colônia Microbiana , Desinfecção/métodos , Ácido Edético/farmacologia , Gentamicinas/farmacologia , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Vancomicina/farmacologia
9.
J Infect Dis ; 210(9): 1357-66, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24837402

RESUMO

BACKGROUND: Limitations in treatment of biofilm-associated bacterial infections are often due to subpopulation of persistent bacteria (persisters) tolerant to high concentrations of antibiotics. Based on the increased aminoglycoside efficiency under alkaline conditions, we studied the combination of gentamicin and the clinically compatible basic amino acid L-arginine against planktonic and biofilm bacteria both in vitro and in vivo. METHODS: Using Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli bioluminescent strains, we studied the combination of L-arginine and gentamicin against planktonic persisters through time-kill curves of late stationary-phase cultures. In vitro biofilm tolerance towards gentamicin was assessed using PVC 96 well-plates assays. Efficacy of gentamicin as antibiotic lock treatment (ALT) at 5 mg/mL at different pH was evaluated in vivo using a model of totally implantable venous access port (TIVAP) surgically implanted in rats. RESULTS: We demonstrated that a combination of gentamicin and the clinically compatible basic amino acid L-arginine increases in vitro planktonic and biofilm susceptibility to gentamicin, with 99% mortality amongst clinically relevant pathogens, i.e. S. aureus, E. coli and P. aeruginosa persistent bacteria. Moreover, although gentamicin local treatment alone showed poor efficacy in a clinically relevant in vivo model of catheter-related infection, gentamicin supplemented with L-arginine led to complete, long-lasting eradication of S. aureus and E. coli biofilms, when used locally. CONCLUSION: Given that intravenous administration of L-arginine to human patients is well tolerated, combined use of aminoglycoside and the non-toxic adjuvant L-arginine as catheter lock solution could constitute a new option for the eradication of pathogenic biofilms.


Assuntos
Antibacterianos/farmacologia , Arginina/farmacologia , Biofilmes/efeitos dos fármacos , Gentamicinas/farmacologia , Animais , Arginina/administração & dosagem , Infecções Relacionadas a Cateter/tratamento farmacológico , Infecções Relacionadas a Cateter/prevenção & controle , Cateteres Venosos Centrais/efeitos adversos , Cateteres Venosos Centrais/microbiologia , Sinergismo Farmacológico , Quimioterapia Combinada , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/prevenção & controle , Gentamicinas/administração & dosagem , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/efeitos dos fármacos , Ratos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/efeitos dos fármacos
10.
J Infect Dis ; 210(9): 1347-56, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24795479

RESUMO

The use of catheters and other implanted devices is constantly increasing in modern medicine. Although catheters improve patients' healthcare, the hydrophobic nature of their surface material promotes protein adsorption and cell adhesion. Catheters are therefore prone to complications, such as colonization by bacterial and fungal biofilms, associated infections, and thrombosis. Here we describe the in vivo efficacy of biologically inspired glycocalyxlike antiadhesive coatings to inhibit Staphylococcus aureus and Pseudomonas aeruginosa colonization on commercial totally implantable venous access ports (TIVAPs) in a clinically relevant rat model of biofilm infection. Although noncoated TIVAPs implanted in rats were heavily colonized by the 2 biofilm-forming pathogens with a high percentage of occlusion, coating TIVAPs reduced their initial adherence and subsequently led to 4-log reduction in biofilm formation and reduced occlusion. Our antiadhesive approach is a simple and generalizable strategy that could be used to minimize clinical complications associated with the use of implantable medical devices.


Assuntos
Biofilmes/crescimento & desenvolvimento , Materiais Biomiméticos/uso terapêutico , Infecções Relacionadas a Cateter/prevenção & controle , Cateteres Venosos Centrais/microbiologia , Animais , Aderência Bacteriana , Cateteres Venosos Centrais/efeitos adversos , Glicocálix/microbiologia , Masculino , Metilcelulose/análogos & derivados , Infecções por Pseudomonas/prevenção & controle , Ratos , Infecções Estafilocócicas/prevenção & controle
11.
Antimicrob Agents Chemother ; 58(4): 2221-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24492362

RESUMO

The rising number of infections caused by biofilm formation and the difficulties associated with their treatment by conventional antimicrobial therapies have led to an intensive search for novel antibiofilm agents. Dermaseptins are antimicrobial peptides with a number of attractive properties that might offer alternative therapies against resistant microorganisms. In this study, we synthesized a set of dermaseptin-derived peptides and evaluated their activities against Gram-positive and Gram-negative bacterial biofilm formation. All dermaseptin-derived peptides demonstrated concentration-dependent antibiofilm activities at microgram concentrations, and their activities were dependent on the nature of the peptides, with the highest levels of activity being exhibited by highly charged molecules. Fluorescent binding and confocal microscopy demonstrated that dermaseptin K4S4, a substituted derivative of the native molecule S4, significantly decreased the viability of planktonic and surface-attached bacteria and stopped biofilm formation under dynamic flow conditions. Cytotoxicity assays with HeLa cells showed that some of the tested peptides were less cytotoxic than current antibiotics. Overall, these findings indicate that dermaseptin derivatives might constitute new lead structures for the development of potent antibiofilm agents.


Assuntos
Proteínas de Anfíbios/farmacologia , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Células HeLa , Humanos , Testes de Sensibilidade Microbiana
12.
Appl Environ Microbiol ; 79(24): 7770-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24096425

RESUMO

Antimicrobial peptides produced by multicellular organisms as part of their innate system of defense against microorganisms are currently considered potential alternatives to conventional antibiotics in case of infection by multiresistant bacteria. However, while the mode of action of antimicrobial peptides is relatively well described, resistance mechanisms potentially induced or selected by these peptides are still poorly understood. In this work, we studied the mechanisms of action and resistance potentially induced by ApoEdpL-W, a new antimicrobial peptide derived from human apolipoprotein E. Investigation of the genetic response of Escherichia coli upon exposure to sublethal concentrations of ApoEdpL-W revealed that this antimicrobial peptide triggers activation of RcsCDB, CpxAR, and σ(E) envelope stress pathways. This genetic response is not restricted to ApoEdpL-W, since several other antimicrobial peptides, including polymyxin B, melittin, LL-37, and modified S4 dermaseptin, also activate several E. coli envelope stress pathways. Finally, we demonstrate that induction of the CpxAR two-component system directly contributes to E. coli tolerance toward ApoEdpL-W, polymyxin B, and melittin. These results therefore show that E. coli senses and responds to different antimicrobial peptides by activation of the CpxAR pathway. While this study further extends the understanding of the array of peptide-induced stress signaling systems, it also provides insight into the contribution of Cpx envelope stress pathway to E. coli tolerance to antimicrobial peptides.


Assuntos
Antibacterianos/metabolismo , Apolipoproteínas E/metabolismo , Tolerância a Medicamentos , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Fragmentos de Peptídeos/metabolismo , Estresse Fisiológico , Perfilação da Expressão Gênica , Humanos , Redes e Vias Metabólicas/genética , Transdução de Sinais
13.
Bioessays ; 33(4): 300-11, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21344461

RESUMO

Proteinaceous stalks produced by Gram-negative bacteria are often used to adhere to environmental surfaces. Among them, chaperone-usher (CU) fimbriae adhesins, related to prototypical type 1 fimbriae, interact in highly specific ways with different ligands at different stages of bacterial infection or surface colonisation. Recent analyses revealed a large number of potential and often "cryptic" CU fimbriae homologues in the genome of commensal and pathogenic Escherichia coli and closely related bacteria. We propose that CU fimbriae form a yet unexplored arsenal of lectins, carbohydrate-binding proteins involved in various aspects of bacterial surface adhesion and tissue tropism. Combined efforts of molecular and structural biologists will be required to unravel the biological contribution of the bacterial lectome, however, current progress has already opened up new perspectives in the design of novel anti-infective strategies.


Assuntos
Adesinas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fímbrias Bacterianas/metabolismo , Lectinas/metabolismo , Adesinas de Escherichia coli/ultraestrutura , Animais , Adesão Celular , Escherichia coli/crescimento & desenvolvimento , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/prevenção & controle , Humanos , Óperon , Ligação Proteica , Transdução de Sinais , Propriedades de Superfície , Tropismo
14.
Commun Biol ; 6(1): 275, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928386

RESUMO

Bacterial antibiotic resistance is a global health concern of increasing importance and intensive study. Although biofilms are a common source of infections in clinical settings, little is known about the development of antibiotic resistance within biofilms. Here, we use experimental evolution to compare selection of resistance mutations in planktonic and biofilm Escherichia coli populations exposed to clinically relevant cycles of lethal treatment with the aminoglycoside amikacin. Consistently, mutations in sbmA, encoding an inner membrane peptide transporter, and fusA, encoding the essential elongation factor G, are rapidly selected in biofilms, but not in planktonic cells. This is due to a combination of enhanced mutation rate, increased adhesion capacity and protective biofilm-associated tolerance. These results show that the biofilm environment favors rapid evolution of resistance and provide new insights into the dynamic evolution of antibiotic resistance in biofilms.


Assuntos
Antibacterianos , Biofilmes , Antibacterianos/farmacologia , Aminoglicosídeos , Farmacorresistência Bacteriana/genética , Escherichia coli/genética
15.
Microbiol Spectr ; 11(3): e0069023, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37039668

RESUMO

Bacteria can rapidly tune their physiology and metabolism to adapt to environmental fluctuations. In particular, they can adapt their lifestyle to the close proximity of other bacteria or the presence of different surfaces. However, whether these interactions trigger transcriptomic responses is poorly understood. We used a specific setup of E. coli strains expressing native or synthetic adhesins mediating bacterial aggregation to study the transcriptomic changes of aggregated compared to nonaggregated bacteria. Our results show that, following aggregation, bacteria exhibit a core response independent of the adhesin type, with differential expression of 56.9% of the coding genome, including genes involved in stress response and anaerobic lifestyle. Moreover, when aggregates were formed via a naturally expressed E. coli adhesin (antigen 43), the transcriptomic response of the bacteria was more exaggerated than that of aggregates formed via a synthetic adhesin. This suggests that the response to aggregation induced by native E. coli adhesins could have been finely tuned during bacterial evolution. Our study therefore provides insights into the effect of self-interaction in bacteria and allows a better understanding of why bacterial aggregates exhibit increased stress tolerance. IMPORTANCE The formation of bacterial aggregates has an important role in both clinical and ecological contexts. Although these structures have been previously shown to be more resistant to stressful conditions, the genetic basis of this stress tolerance associated with the aggregate lifestyle is poorly understood. Surface sensing mediated by different adhesins can result in various changes in bacterial physiology. However, whether adhesin-adhesin interactions, as well as the type of adhesin mediating aggregation, affect bacterial cell physiology is unknown. By sequencing the transcriptomes of aggregated and nonaggregated cells expressing native or synthetic adhesins, we characterized the effects of aggregation and adhesin type on E. coli physiology.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Humanos , Escherichia coli/genética , Aderência Bacteriana/genética , Adesinas Bacterianas/genética , Adesinas de Escherichia coli/genética , Proteínas de Escherichia coli/genética , Infecções por Escherichia coli/microbiologia
16.
Microbiol Spectr ; 11(4): e0521722, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37255442

RESUMO

Peptidoglycan is an essential component of the bacterial cell envelope that sustains the turgor pressure of the cytoplasm, determines cell shape, and acts as a scaffold for the anchoring of envelope polymers such as lipoproteins. The final cross-linking step of peptidoglycan polymerization is performed by classical d,d-transpeptidases belonging to the penicillin-binding protein (PBP) family and by l,d-transpeptidases (LDTs), which are dispensable for growth in most bacterial species and whose physiological functions remain elusive. In this study, we investigated the contribution of LDTs to cell envelope synthesis in Pseudomonas aeruginosa grown in planktonic and biofilm conditions. We first assigned a function to each of the three P. aeruginosa LDTs by gene inactivation in P. aeruginosa, heterospecific gene expression in Escherichia coli, and, for one of them, direct determination of its enzymatic activity. We found that the three P. aeruginosa LDTs catalyze peptidoglycan cross-linking (LdtPae1), the anchoring of lipoprotein OprI to the peptidoglycan (LdtPae2), and the hydrolysis of the resulting peptidoglycan-OprI amide bond (LdtPae3). Construction of a phylogram revealed that LDTs performing each of these three functions in various species cannot be assigned to distinct evolutionary lineages, in contrast to what has been observed with PBPs. We showed that biofilm, but not planktonic bacteria, displayed an increase proportion of peptidoglycan cross-links formed by LdtPae1 and a greater extent of OprI anchoring to peptidoglycan, which is controlled by LdtPae2 and LdtPae3. Consistently, deletion of each of the ldt genes impaired biofilm formation and potentiated the bactericidal activity of EDTA. These results indicate that LDTs contribute to the stabilization of the bacterial cell envelope and to the adaptation of peptidoglycan metabolism to growth in biofilm. IMPORTANCE Active-site cysteine LDTs form a functionally heterologous family of enzymes that contribute to the biogenesis of the bacterial cell envelope through formation of peptidoglycan cross-links and through the dynamic anchoring of lipoproteins to peptidoglycan. Here, we report the role of three P. aeruginosa LDTs that had not been previously characterized. We show that these enzymes contribute to resistance to the bactericidal activity of EDTA and to the adaptation of cell envelope polymers to conditions that prevail in biofilms. These results indicate that LDTs should be considered putative targets in the development of drug-EDTA associations for the control of biofilm-related infections.


Assuntos
Peptidil Transferases , Peptidil Transferases/genética , Peptidil Transferases/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Peptidoglicano/metabolismo , Ácido Edético , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Escherichia coli/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
17.
Microbiol Spectr ; 11(4): e0176723, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37347165

RESUMO

Many eukaryotic membrane-dependent functions are often spatially and temporally regulated by membrane microdomains (FMMs), also known as lipid rafts. These domains are enriched in polyisoprenoid lipids and scaffolding proteins belonging to the stomatin, prohibitin, flotillin, and HflK/C (SPFH) protein superfamily that was also identified in Gram-positive bacteria. In contrast, little is still known about FMMs in Gram-negative bacteria. In Escherichia coli K-12, 4 SPFH proteins, YqiK, QmcA, HflK, and HflC, were shown to localize in discrete polar or lateral inner membrane locations, raising the possibility that E. coli SPFH proteins could contribute to the assembly of inner membrane FMMs and the regulation of cellular processes. Here, we studied the determinant of the localization of QmcA and HflC and showed that FMM-associated cardiolipin lipid biosynthesis is required for their native localization pattern. Using Biolog phenotypic arrays, we showed that a mutant lacking all SPFH genes displayed increased sensitivity to aminoglycosides and oxidative stress that is due to the absence of HflKC. Our study therefore provides further insights into the contribution of SPFH proteins to stress tolerance in E. coli. IMPORTANCE Eukaryotic cells often segregate physiological processes in cholesterol-rich functional membrane microdomains. These domains are also called lipid rafts and contain proteins of the stomatin, prohibitin, flotillin, and HflK/C (SPFH) superfamily, which are also present in prokaryotes but have been mostly studied in Gram-positive bacteria. Here, we showed that the cell localization of the SPFH proteins QmcA and HflKC in the Gram-negative bacterium E. coli is altered in the absence of cardiolipin lipid synthesis. This suggests that cardiolipins contribute to E. coli membrane microdomain assembly. Using a broad phenotypic analysis, we also showed that HflKC contribute to E. coli tolerance to aminoglycosides and oxidative stress. Our study, therefore, provides new insights into the cellular processes associated with SPFH proteins in E. coli.


Assuntos
Escherichia coli K12 , Proteínas de Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proibitinas , Aminoglicosídeos/farmacologia , Aminoglicosídeos/metabolismo , Cardiolipinas/metabolismo , Escherichia coli K12/metabolismo , Microdomínios da Membrana/metabolismo , Estresse Oxidativo , Antibacterianos/farmacologia , Antibacterianos/metabolismo
18.
Nat Commun ; 14(1): 2553, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137893

RESUMO

Bacterial biofilms are surface-attached communities that are difficult to eradicate due to a high tolerance to antimicrobial agents. The use of non-biocidal surface-active compounds to prevent the initial adhesion and aggregation of bacterial pathogens is a promising alternative to antibiotic treatments and several antibiofilm compounds have been identified, including some capsular polysaccharides released by various bacteria. However, the lack of chemical and mechanistic understanding of the activity of these polymers limits their use to control biofilm formation. Here, we screen a collection of 31 purified capsular polysaccharides and first identify seven new compounds with non-biocidal activity against Escherichia coli and/or Staphylococcus aureus biofilms. We measure and theoretically interpret the electrophoretic mobility of a subset of 21 capsular polysaccharides under applied electric field conditions, and we show that active and inactive polysaccharide polymers display distinct electrokinetic properties and that all active macromolecules share high intrinsic viscosity features. Despite the lack of specific molecular motif associated with antibiofilm properties, the use of criteria including high density of electrostatic charges and permeability to fluid flow enables us to identify two additional capsular polysaccharides with broad-spectrum antibiofilm activity. Our study therefore provides insights into key biophysical properties discriminating active from inactive polysaccharides. The characterization of a distinct electrokinetic signature associated with antibiofilm activity opens new perspectives to identify or engineer non-biocidal surface-active macromolecules to control biofilm formation in medical and industrial settings.


Assuntos
Anti-Infecciosos , Polissacarídeos Bacterianos , Polissacarídeos Bacterianos/química , Biofilmes , Antibacterianos/farmacologia , Bactérias , Polímeros , Testes de Sensibilidade Microbiana
19.
Nat Commun ; 14(1): 7642, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37993432

RESUMO

E. coli and most other diderm bacteria (those with two membranes) have an inner membrane enriched in glycerophospholipids (GPLs) and an asymmetric outer membrane (OM) containing GPLs in its inner leaflet and primarily lipopolysaccharides in its outer leaflet. In E. coli, this lipid asymmetry is maintained by the Mla system which consists of six proteins: the OM lipoprotein MlaA extracts GPLs from the outer leaflet, and the periplasmic chaperone MlaC transfers them across the periplasm to the inner membrane complex MlaBDEF. However, GPL trafficking still remains poorly understood, and has only been studied in a handful of model species. Here, we investigate GPL trafficking in Veillonella parvula, a diderm Firmicute with an Mla system that lacks MlaA and MlaC, but contains an elongated MlaD. V. parvula mla mutants display phenotypes characteristic of disrupted lipid asymmetry which can be suppressed by mutations in tamB, supporting that these two systems have opposite GPL trafficking functions across diverse bacterial lineages. Structural modelling and subcellular localisation assays suggest that V. parvula MlaD forms a transenvelope bridge, comprising a typical inner membrane-localised MCE domain and, in addition, an outer membrane ß-barrel. Phylogenomic analyses indicate that this elongated MlaD type is widely distributed across diderm bacteria and likely forms part of the ancestral functional core of the Mla system, which would be composed of MlaEFD only.


Assuntos
Proteínas de Escherichia coli , Fosfolipídeos , Fosfolipídeos/metabolismo , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Transporte Biológico , Glicerofosfolipídeos/metabolismo , Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Firmicutes , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo
20.
Nat Commun ; 14(1): 7152, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932269

RESUMO

The outer membrane (OM) in diderm, or Gram-negative, bacteria must be tethered to peptidoglycan for mechanical stability and to maintain cell morphology. Most diderm phyla from the Terrabacteria group have recently been shown to lack well-characterised OM attachment systems, but instead have OmpM, which could represent an ancestral tethering system in bacteria. Here, we have determined the structure of the most abundant OmpM protein from Veillonella parvula (diderm Firmicutes) by single particle cryogenic electron microscopy. We also characterised the channel properties of the transmembrane ß-barrel of OmpM and investigated the structure and PG-binding properties of its periplasmic stalk region. Our results show that OM tethering and nutrient acquisition are genetically linked in V. parvula, and probably other diderm Terrabacteria. This dual function of OmpM may have played a role in the loss of the OM in ancestral bacteria and the emergence of monoderm bacterial lineages.


Assuntos
Parede Celular , Firmicutes , Membrana Celular/metabolismo , Parede Celular/metabolismo , Bactérias/metabolismo , Bactérias Gram-Negativas/metabolismo , Nutrientes , Proteínas da Membrana Bacteriana Externa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA