Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Crit Rev Toxicol ; 54(3): 194-213, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38470098

RESUMO

Neonicotinoid pesticides are utilized against an extensive range of insects. A growing body of evidence supports that these neuro-active insecticides are classified as toxicants in invertebrates. However, there is limited published data regarding their toxicity in vertebrates and mammals. the current systematic review is focused on the up-to-date knowledge available for several neonicotinoid pesticides and their non-acute toxicity on rodents and human physiology. Oral lethal dose 50 (LD50) of seven neonicotinoids (i.e. imidacloprid, acetamiprid, clothianidin, dinotefuran, thiamethoxam, thiacloprid, and nitenpyram) was initially identified. Subsequently, a screening of the literature was conducted to collect information about non-acute exposure to these insecticides. 99 studies were included and assessed for their risk of bias and level of evidence according to the Office of Health and Translation (OHAT) framework. All the 99 included papers indicate evidence of reproductive toxicity, hepatotoxicity, nephrotoxicity, neurotoxicity, immunotoxicity, and oxidative stress induction with a high level of evidence in the health effect of rodents and a moderate level of evidence for human health. The most studied type of these insecticides among 99 papers was imidacloprid (55 papers), followed by acetamiprid (22 papers), clothianidin (21 papers), and thiacloprid (11 papers). While 10 of 99 papers assessed the relationship between clothianidin, thiamethoxam, dinotefuran, and nitenpyram, showing evidence of liver injury, dysfunctions of oxidative stress markers in the reproductive system, and intestinal toxicity. This systematic review provides a comprehensive overview of the potential risks caused by neonicotinoid insecticides to humans and rodents with salient health effects. However, further research is needed to better emphasize and understand the patho-physiological mechanisms of these insecticides, taking into account various factors that can influence their toxicity.


Assuntos
Inseticidas , Neonicotinoides , Nitrocompostos , Humanos , Animais , Medição de Risco , Neonicotinoides/toxicidade , Inseticidas/toxicidade , Nitrocompostos/toxicidade , Guanidinas/toxicidade , Tiametoxam/toxicidade , Tiazóis/toxicidade , Tiazinas
2.
Polymers (Basel) ; 16(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38337310

RESUMO

Graphene-based materials have been widely studied in the field of supercapacitors. However, their electrochemical properties and applications are still restricted by the susceptibility of graphene-based materials to curling and agglomeration during production. This study introduces a facile method for synthesizing reduced graphene oxide (rGO) nanosheets and activated carbon based on olive stones (OS) with polyaniline (PAni) surface decoration for the development of supercapacitors. Several advanced techniques were used to examine the structural properties of the samples. The obtained PAni@OS-rGO (1:1) electrode exhibits a high electrochemical capacity of 582.6 F·g-1 at a current density of 0.1 A·g-1, and an energy density of 26.82 Wh·kg-1; thus, it demonstrates potential for efficacious energy storage. In addition, this electrode material exhibits remarkable cycling stability, retaining over 90.07% capacitance loss after 3000 cycles, indicating a promising long cycle life. Overall, this research highlights the potential of biomass-derived OS in the presence of PAni and rGO to advance the development of high-performance supercapacitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA