Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Res ; 172: 105813, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34411733

RESUMO

BACKGROUND: Vascular dysfunction is a checkpoint to the development of hypertension. Heparan sulfate proteoglycans (HSPG) participate in nitric oxide (NO) and calcium signaling, key regulators of vascular function. The relationship between HSPG-mediated NO and calcium signaling and vascular dysfunction has not been explored. Likewise, the role of HSPG on the control of systemic blood arterial pressure is unknown. Herein, we sought to determine if the HSPG syndecan 1 and glypican 1 control systemic blood pressure and the progression of hypertension. PURPOSE: To determine the mechanisms whereby glypican 1 and syndecan 1 regulate vascular tone and contribute to the development of noradrenergic hypertension. EXPERIMENTAL APPROACH AND KEY RESULTS: By assessing systemic arterial blood pressure we observed that syndecan 1 (Sdc1-/-) and glypican 1 (Gpc1-/-) knockout mice show a similar phenotype of decreased systolic blood pressure that is presented in a striking manner in the Gpc1-/- strain. Gpc1-/- mice are also uniquely protected from a norepinephrine hypertensive challenge failing to become hypertensive. This phenotype was associated with impaired calcium-dependent vasoconstriction and altered expression of calcium-sensitive proteins including SERCA and calmodulin. In addition, Gpc1-/- distinctively showed decreased IP3R activity and increased calcium storage in the endoplasmic reticulum. CONCLUSIONS AND IMPLICATIONS: Glypican 1 is a trigger for the development of noradrenergic hypertension that acts via IP3R- and calcium-dependent signaling pathways. Glypican 1 may be a potential target for the development of new therapies for resistant hypertension or conditions where norepinephrine levels are increased.


Assuntos
Aorta Torácica/efeitos dos fármacos , Cálcio/metabolismo , Glipicanas/genética , Hipertensão , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Norepinefrina/farmacologia , Sindecana-1/genética , Animais , Aorta Torácica/metabolismo , Aorta Torácica/fisiologia , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/genética , Hipertensão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
Clin Exp Pharmacol Physiol ; 48(11): 1537-1546, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34329487

RESUMO

K+ channel activation is one of the major mechanisms involved in vasodilation. Vasoconstrictor agonists such as angiotensin II promote ATP-dependent potassium channels (KATP ) dysfunction. This study evaluates whether thromboxane-prostanoid (TP receptor) activation by the agonist U46619 increases reactive oxygen species (ROS) production in rat aortas, which could contribute to KATP channel dysfunction and impaired NO-dependent vasodilation. TP receptor activation with the selective agonist U46619 increased ROS in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), but the TP receptor antagonist SQ29548 abolished this effect. ECs and VSMCs incubation with ROS scavengers like Tiron or PEG-Catalase impaired U46619-induced ROS production. U46619 at the concentrations of 0.1 and 1 µmol/L induced contractions with similar amplitude. KATP channel activation with pinacidil-induced relaxation was lower for the contractions induced with 0.1 or 1 µmol/L U46619 than with 10 nmol/L U46619. Acetylcholine-induced relaxation provided similar results. In aortas pre-contracted with 10 nmol/L U46619, neither Tiron (100 µmol/L) nor catalase (300 U/mL) affected pinacidil-induced relaxation. However, in aortas pre-contracted with 0.1 µmol/L U46619, catalase potentiated pinacidil-induced relaxation. Pinacidil potentiated acetylcholine-induced relaxation in aortas pre-contracted with 0.1 and 1 µmol/L U46619. Incubation with 10 nmol/L U46619 increased NO concentration in ECs. Taken together, these results show that high concentrations of the TP receptor agonist U46619 impair KATP channels, which is probably due to ROS production. It is likely that hydrogen peroxide is the ROS.


Assuntos
Canais KATP
3.
Nitric Oxide ; 86: 12-20, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30772501

RESUMO

PURPOSE: This study investigated the intracellular mechanisms involved in the vasodilatation induced by the classic NO donor SNP and the non-classic NO donor cis-[Ru(bpy)2(py)(NO2)](PF6) (or RuBPY) in mesenteric resistance arteries obtained from renal hypertensive (2K-1C) and normotensive (2K) rats. METHODS: On the basis of fluorimetric assays in cultured vascular smooth muscle cells (VSMCs) isolated from 2K-1C and 2K rats, we measured NO release from SNP and RuBPY, cytosolic Ca2+ concentration ([Ca2+]c), and reactive oxygen species (ROS) with the selective probes DAF-2DA, Fluo-3AM and the more selective probe for peroxynitrite (7-CBA), respectively. We determined isometric tension in mesenteric arteries to assess SNP- and RuBPY-induced relaxation. RESULTS: SNP and RuBPY released NO in comparable amounts in cultured aortic VSMCs from hypertensive 2K-1C and normotensive 2K rats. The NO0 scavenger hydroxocobalamin blunted NO release. Sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) inhibition with thapsigargin reduced [Ca2+]c in normotensive 2K rat VSMCs only. ROS amounts were greater in hypertensive 2K-1C than in normotensive 2K rat VSMCs, but neither SNP nor RuBPY altered ROS concentrations in any of the groups. SNP and RuBPY induced similar relaxation in hypertensive 2K-1C and normotensive 2K rat mesenteric resistance arteries. The SNP and RuBPY-induced relaxation involves sGC and PKG activation. On the other hand, SNP but not RuBPY activates K+ channels. Interestingly, SERCA inhibition reduces SNP induced relaxation only in normotensive 2K rat mesenteric arteries whereas RuBPY-induced relaxation does not involve SERCA activation in both normotensive and hypertensive arteries. CONCLUSION: Our results indicate that SNP and RuBPY-induced mesenteric resistance artery relaxation involves NO/sGC/cGMP/PKG pathway activation. K+ channels and SERCA activation is required to SNP but not for RuBPY-induced relaxation. Moreover, SERCA seems to be impaired in hypertensive 2K-1C rat mesenteric resistance arteries although it does not impact SNP- or RuBPY-induced relaxation.


Assuntos
Complexos de Coordenação/farmacologia , Hipertensão Renal/fisiopatologia , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Vasodilatação/efeitos dos fármacos , Animais , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Óxido Nítrico/metabolismo , Canais de Potássio/metabolismo , Ratos Wistar , Rutênio/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Guanilil Ciclase Solúvel/metabolismo
4.
Nitric Oxide ; 69: 69-77, 2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28559108

RESUMO

PURPOSE: We have demonstrated that RuBPY induces hypotensive effect in hypertensive rats, promotes vasodilation at low concentrations, and presents low cytotoxicity. This study aimed to verify whether the NO donor RuBPY synthesized in our laboratory induces in vitro tolerance and cross-tolerance to acetylcholine (ACh) and sodium nitroprusside (SNP) in rat cava vein. METHODS: We compared the maximum relaxing effect (ME) and potency (pD2) of RuBPY and nitroglycerin (GTN) in cava vein rings. Exposure to RuBPY or GTN induced in vitro tolerance. Western Blotting helped to evaluate phosphorylation of endothelial nitric oxide synthase (NOS3/eNOS) at the Ser1177 activation site and at the Thr495 inactivation site and to determine the ratio between active eNOS dimers and inactive eNOS monomers. The NO and ROS ratio was assessed by flow citometry. RESULTS: RuBPY did not induce cross-tolerance with ACh, and this NO donor took longer to induce tolerance than GTN. Only GTN elicited phosphorylation of eNOS at Ser1177 and Thr495. In contrast to results obtained with pre-exposure to GTN, pre-exposure to RuBPY did not reduce the formation of NO. The O2- ratio increased in cells incubated with GTN. CONCLUSIONS: A major contribution of this work has been to evaluate the phenomenon of tolerance induced by GTN and by the new ruthenium complex RuBPY in a venous bed. RuBPY is more advantageous than GTN: RuBPY takes longer to induce tolerance, does not induce endothelial dysfunction or cross-tolerance to ACh, and generates lower amount of ROS.


Assuntos
Acetilcolina/farmacologia , Complexos de Coordenação/farmacologia , Tolerância a Medicamentos/fisiologia , Doadores de Óxido Nítrico/farmacologia , Rutênio , Sal Dissódico do Ácido 1,2-Di-Hidroxibenzeno-3,5 Dissulfônico/farmacologia , Animais , Masculino , Relaxamento Muscular/efeitos dos fármacos , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/química , Óxido Nítrico Sintase Tipo III/metabolismo , Nitroglicerina/farmacologia , Nitroprussiato/farmacologia , Fosforilação/efeitos dos fármacos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Veias/fisiologia , Veia Cava Inferior/fisiologia
5.
J Cardiovasc Pharmacol ; 65(2): 168-75, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25384194

RESUMO

Nitric oxide (NO) can be found in different species and is a potent vasodilator. The ruthenium compound cis-[Ru(NO)(NO2)(bpy)2].(PF6)2 (BPY) can generate NO. This study aimed to investigate the BPY stability at physiological pH, the cellular mechanisms involved in BPY effect, NO species originating from BPY, and to verify how BPY affects blood pressure. Our results has shown that at pH 7.4 and 9.4, the NO coordinated to ruthenium (Ru-NO) is converted to nitrite (Ru-NO2) and remains stable. In aortic rings, the stable configuration of BPY (Ru-NO2) induces vascular relaxation in a concentration-dependent manner. Thus, further experiments were made with stable configuration of BPY (Ru-NO2). The relaxation induced by BPY was abolished in the presence of guanylyl cyclase inhibitor and decreased in the presence of potassium channel blocker. By using radicalar (NO) and nitroxyl (NO) scavenger, our results suggest that the BPY mainly release the radicalar species. By using fluorescence probes to detect intracellular NO concentration ([NO]i) and cytosolic Ca concentration ([Ca]c), we verified that in smooth muscle cells, BPY induces an increase in [NO]i and a decrease in [Ca]c. The intravenous bolus injection of 1.25, 2.5, and 5.0 mg/kg from stable configuration of BPY results in a decrease on basal blood pressure values. Taken together, our results indicated that the stable configuration of the compound BPY induces vascular relaxation in aorta because of NO release and decrease of [Ca]c in vascular smooth muscle cells. Also, the stable configuration is able to reduce the blood pressure in a dose-dependent manner.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Músculo Liso Vascular , Óxido Nítrico/metabolismo , Compostos de Rutênio/farmacologia , Vasodilatação , Animais , Aorta , Relação Dose-Resposta a Droga , Guanilato Ciclase/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , Ratos , Ratos Wistar , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Vasodilatadores/farmacologia
6.
Vasc Biol ; 6(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38843387

RESUMO

Abstract: Renin-angiotensin system plays a critical role in blood pressure control, and the abnormal activation of the AT1 receptor contributes to the development of renovascular hypertension. This study aimed to evaluate the underlying cellular signaling for AT1 receptor activation by Ang II and to compare this mechanism between aortas from 2K-1C and 2K rats. Effects of antagonists and inhibitors were investigated on Ang II-induced contractions in denuded or intact-endothelium aortas. The AT1 receptor antagonist abolished Ang II-induced contraction in 2K-1C and 2K rat aortas, while AT2 and Mas receptors antagonists had no effect. Endothelial nitric oxide synthase inhibition increased the maximal effect (Emax) of Ang II in 2K, which was not changed in 2K-1C aortas. It was associated with lower eNOS mRNA levels in 2K-1C. Endothelium removal increased the Emax of Ang II in 2K-1C and mainly in 2K rat aortas. Nox and COX inhibition did not alter Ang II-induced contraction in 2K and 2K-1C rat aortas. However, AT1 expression was higher in 2K-1C compared to 2K rat aortic rings, whereas expression of phosphorylated (active) IP3 receptors was lower in 2K-1C than in 2K rats. These results demonstrate that endothelium removal impairs Ang II-stimulated contraction in the aorta of 2K-1C rats, which is associated with the reduction of IP3 receptor phosphorylation and activation. In addition, eNOS plays a critical role in Ang II-induced contraction in 2K rat aortas. It is possible that the high Ang II plasma levels could desensitize AT1 receptor in 2K-1C rats, leading to impaired IP3 receptors activation.

7.
Nitric Oxide ; 35: 47-53, 2013 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23968803

RESUMO

The present work aimed to investigate the cellular mechanisms involved on the vasorelaxation induced by the new nitric oxide donor [Ru(terpy)(bdq)NO](3+) (Terpy) in isolated mesenteric resistance artery and to compare the vascular responses in isolated vessels from 2K and 2K-1C hypertensive rats. We have used this artery because it is important to the control of vascular resistance and consequently to the blood pressure control. The NO donor Terpy induced relaxation in a concentration-dependent way in mesenteric resistance arteries. There were no differences between renal hypertensive (2K-1C) and normotensive (2K) in Terpy-induced relaxation neither in NO released. The relaxation induced by Terpy was inhibited by the soluble guanylyl-cyclase (sGC) inhibitor ODQ both in 2K and in 2K-1C with similar amplitude. In agreement with these data, the protein expression of the subunits α1 and ß1 of the enzyme sGC was not different between 2K-1C and 2K mesenteric bed. The relaxation induced by Terpy was inhibited by the cGMP-dependent protein kinase (G kinase) inhibitor or by the non-selective K(+) channel blocker tetraethylamonium (TEA), but with no difference between 2K-1C and 2K arteries. The relaxation induced by Terpy was also inhibited by the SERCA inhibitor thapsigargin in both groups. Taken together, these results show that the vascular relaxation induced by the NO donor [Ru(terpy)(bdq)NO](3+) involves the activation of NO/sGC/cGMP/GK pathway, activation of K(+) channels sensitive to TEA and SERCA in normotensive and renal hypertensive rat mesenteric resistance arteries. Surprisingly, Terpy-induced vasorelaxation is similar in mesenteric resistance arteries of renal hypertensive and normotensive rats.


Assuntos
Hipertensão Renal , Doadores de Óxido Nítrico/farmacologia , Resistência Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Animais , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Guanilato Ciclase/análise , Guanilato Ciclase/metabolismo , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiologia , Compostos Organometálicos/farmacologia , Canais de Potássio/metabolismo , Ratos , Receptores Citoplasmáticos e Nucleares/análise , Receptores Citoplasmáticos e Nucleares/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , Guanilil Ciclase Solúvel
8.
J Inorg Biochem ; 243: 112166, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36947899

RESUMO

We have synthesized cis-[Ru(bpy)2(NO2-κN)Ln-](n-1) and cis-[Ru(bpy)2(NO2-κO)L n-](n-1) (bpy = 2,2'-bipyridine; k = indication of the coordinated center to Ruthenium; L = pyridine type ligand) by reacting cis-[Ru(bpy)2(H2O)Ln-](n-2) with sodium nitrite or conducting basic cis-[Ru(bpy)2NO(Ln-)](n-3) hydrolysis. Photolysis at the metal-ligand charge transfer band (MLCT) of the isomers yielded nitric oxide (NO) as determined by NO measurement. The NO photorelease rates obtained upon 447 nm laser irradiation of the ruthenium complexes showed that cis-[Ru(bpy)2(NO2-κO)Ln-](n-1) released NO three times faster than cis-[Ru(bpy)2(NO2-κN)Ln-](n-1). We investigated endothelium-dependent vasodilation induced by cis-[Ru(bpy)2(4-pic)(NO2-κN)]+ and cis-[Ru(bpy)2(4-pic)(NO2-κO)]+ (4-pic = 4-picoline) in isolated 3 mm aortic rings precontracted with L-phenylephrine. Maximum vasodilation was achieved under 447 nm laser irradiation of 0.5 µMol.L-1 ruthenium complexes for 100 s.


Assuntos
Rutênio , Vasodilatadores , Isomerismo , Rutênio/farmacologia , Rutênio/química , Óxido Nítrico , Ligantes , Dióxido de Nitrogênio
9.
Nitric Oxide ; 26(2): 111-7, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22245451

RESUMO

Drugs that release nitric oxide (NO) usually have limitations due to their harmful effects. Sodium nitroprusside (SNP) induces a rapid hypotension that leads to reflex tachycardia, which could be an undesirable effect in patients with heart disease, a common feature of hypertension. The nitrosyl ruthenium complex [Ru(terpy)(bdq)NO(+)](3+) (TERPY) is a NO donor that is less potent than SNP in denuded aortic rings. This study evaluated the hypotension and vasorelaxation induced by this NO donor in Wistar (W) and spontaneously hypertensive rats (SHR) and compared to the results obtained with SNP. Differently from the hypotension induced by SNP, the action of TERPY was slow, long lasting and it did not lead to reflex tachycardia in both groups. The hypotension induced by the NO-donors was more potent in SHR than in W. TERPY induced relaxation with similar efficacy to SNP, although its potency is lower in both strains. The relaxation induced by TERPY is similar in W and SHR, but SNP is more potent and efficient in SHR. The relaxation induced by TERPY is partially dependent on guanylate cyclase in SHR aorta. The NO released from the NO donors measured with DAF-2 DA by confocal microscopy shows that TERPY releases similar amounts of NO in W and SHR, while SNP releases more NO in SHR aortic rings.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Doadores de Óxido Nítrico/farmacologia , Rutênio/farmacologia , Vasodilatação/efeitos dos fármacos , Animais , Anti-Hipertensivos/farmacologia , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/fisiologia , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Óxido Nítrico/farmacologia , Óxido Nítrico/uso terapêutico , Nitroprussiato/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Wistar
10.
Nitric Oxide ; 27(1): 59-66, 2012 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-22561111

RESUMO

Nitric oxide (NO) has been pointed out as being the main mediator involved in the hypotension and tissue injury taking place during sepsis. This study aimed to investigate the cellular mechanisms implicated in the acetylcholine (ACh)-induced relaxation detected in aortic rings isolated from rats submitted to cecal ligation and perforation (CLP group), 6h post-CLP. The mean arterial pressure was recorded, and the concentration-effect curves for ACh were constructed for endothelium-intact aortic rings in the absence (control) or after incubation with one of the following NO synthase inhibitors: L-NAME (non-selective), L-NNA (more selective for eNOS), 7-nitroindazole (more selective for nNOS), or 1400W (selective for iNOS). The NO concentration was determined by using confocal microscopy. The protein expression of the NOS isoforms was quantified by Western blot analysis. The prostacyclin concentration was indirectly analyzed on the basis of 6-keto-prostaglandin F(1α) (6-keto-PGF(1α)) levels measured by enzyme immunoassay. There were no differences between Sham- and CLP-operated rats in terms of the relaxation induced by acetylcholine. However, the NOS inhibitors reduced this relaxation in both groups, but this effect remained more pronounced in the CLP group as compared to the Sham group. The acetylcholine-induced NO production was higher in the rat aortic endothelial cells of the CLP group than in those of the Sham group. eNOS protein expression was larger in the CLP group, but the iNOS protein was not verified in any of the groups. The basal 6-keto-PGF(1α) levels were higher in the CLP group, but the acetylcholine-stimulated levels did not increase in CLP as much as they did in the Sham group. Taken together, our results show that the augmented NO production in sepsis syndrome elicited by cecal ligation and perforation is due to eNOS up-regulation and not to iNOS.


Assuntos
Ceco/lesões , Ceco/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/biossíntese , Sepse/metabolismo , Acetilcolina/farmacologia , Animais , Aorta/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Western Blotting , Modelos Animais de Doenças , Perfuração Intestinal , Ligadura , Masculino , Óxido Nítrico/metabolismo , Prostaglandinas I/metabolismo , Isoformas de Proteínas , Ratos , Ratos Wistar , Regulação para Cima , Vasodilatação/efeitos dos fármacos
11.
Nitric Oxide ; 26(3): 162-8, 2012 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-22327038

RESUMO

Vascular dysfunction associated with two-kidney, one-clip (2K-1C) hypertension may result from both altered matrix metalloproteinase (MMP) activity and higher concentrations of reactive oxygen species (ROS). Doxycycline is considering the most potent MMP inhibitor of tetracyclines and attenuates 2K-1C hypertension-induced high blood pressure and chronic vascular remodeling. Doxycycline might also act as a ROS scavenger and this may contribute to the amelioration of some cardiovascular diseases associated with increased concentrations of ROS. We hypothesized that in addition to its MMP inhibitory effect, doxycycline attenuates oxidative stress and improves nitric oxide (NO) bioavailability in 2K-1C hypertension, thus improving hypertension-induced arterial endothelial dysfunction. Sham operated or 2K-1C hypertensive rats were treated with doxycycline 30 mg/kg/day (or vehicle). After 8 weeks of treatment, aortic rings were isolated to assess endothelium dependent vasorelaxation to A23187. Arterial and systemic levels of ROS were respectively measured using dihydroethidine (DHE) and thiobarbituric acid reactive substances (TBARS). Neutrophils-derived ROS were tested in vitro using the fluoroprobe Carboxy-H(2)DCFDA and human neutrophils stimulated with phorbol 12-myristate 13-acetate (PMA). NO levels were assessed in rat aortic endothelial cells by confocal microscopy. Aortic MMP activity was determined by in situ zymography. Doxycycline attenuated 2K-1C hypertension (169 ± 17.3 versus 209 ± 10.9mm Hg in hypertensive controls, p<0.05) and protected against hypertension-induced reduction in endothelium-dependent vasorelaxation to A23187 (p<0.05). Doxycycline also decreased hypertension-induced oxidative stress (p<0.05), higher MMP activity (p<0.01) and improved NO levels in aortic endothelial cells (p<0.01). Therefore, doxycycline ameliorates 2K-1C hypertension-induced endothelial dysfunction in aortas by inhibiting oxidative stress generation and improving NO bioavailability, in addition to its inhibitory effects on MMP activity.


Assuntos
Doxiciclina/farmacologia , Hipertensão Renal/tratamento farmacológico , Rim/irrigação sanguínea , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Calcimicina/farmacologia , Ionóforos de Cálcio/farmacologia , Modelos Animais de Doenças , Hipertensão Renal/metabolismo , Hipertensão Renal/patologia , Modelos Lineares , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Neutrófilos/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
12.
J Cardiovasc Pharmacol ; 60(2): 193-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22635073

RESUMO

In this study, we investigated the effect of the ruthenium complex [Ru(terpy)(bdq)NO] (TERPY) on the arterial pressure from renal hypertensive 2 kidney-1 clip (2K-1C) rats, which was compared with sodium nitroprusside (SNP). The most interesting finding was that the intravenous bolus injection of TERPY (2.5, 5.0, 7 mg/kg) had a dose-dependent hypotensive effect only in 2K-1C rats. On the other hand, SNP (35 and 70 µg/kg) presented a similar hypotensive effect in both normotensive (2K) and 2K-1C although the effect of 70 µg/kg was >35 µg/kg. The injection of the nonselective NO-synthase inhibitor N-nitro-L-arginine methyl ester (L-NAME) increased the arterial pressure in 2K and 2K-1C rats with a similar magnitude. After infusion of L-NAME, the hypotensive effect induced by TERPY and SNP was potentiated in both 2K and in 2K-1C rats. The administration of the superoxide scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl increased the hypotensive effect induced by TERPY or SNP in both 2K and 2K-1C rats. The hypotensive effect induced by TERPY was longer than that produced by SNP. Taken together, our results show that the TERPY has a long-lasting hypotensive effect, which has a dose dependence and higher magnitude in 2K-1C compared with in 2K rats. In comparison with SNP, TERPY is less potent in inducing arterial pressure fall, but it presents a much longer hypotensive effect.


Assuntos
Anti-Hipertensivos/farmacologia , Pressão Arterial/efeitos dos fármacos , Hipertensão Renovascular/tratamento farmacológico , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico/metabolismo , Compostos de Rutênio/farmacologia , Animais , Anti-Hipertensivos/metabolismo , Óxidos N-Cíclicos/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Hipertensão Renovascular/metabolismo , Hipertensão Renovascular/fisiopatologia , NG-Nitroarginina Metil Éster/farmacologia , Doadores de Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Nitroprussiato/farmacologia , Ratos , Compostos de Rutênio/metabolismo , Marcadores de Spin , Fatores de Tempo
13.
Nitric Oxide ; 24(4): 192-8, 2011 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-21440656

RESUMO

Nitric oxide (NO) plays an important role in the control of the vascular tone and the most often employed NO donors have limitations due to their harmful side-effects. In this context, new NO donors have been prepared, in order to minimize such undesirable effects. cis-[Ru(bpy)2(py)NO2](PF6) (RuBPY) is a new nitrite complex synthesized in our laboratory that releases NO in the presence of the vascular tissue only. In this work the vasorelaxation induced by this NO donor has been studied and compared to that obtained with the well known NO donor SNP. The relaxation induced by RuBPY is concentration-dependent in denuded rat aortas pre-contracted with phenylephrine (EC50). This new compound induced relaxation with efficacy similar to that of SNP, although its potency is lower. The time elapsed until maximum relaxation is achieved (E max=240s) is similar to measured for SNP (210s). Vascular reactivity experiments demonstrated that aortic relaxation by RuBPY is inhibited by the soluble guanylyl-cyclase inhibitor 1H-[1,2,4] oxadiozolo[4,3-a]quinoxaline-1-one (ODQ 1µM). In a similar way, 1µM ODQ also reduces NO release from the complex as measured with DAF-2 DA by confocal microscopy. These findings suggest that this new complex RuBPY that has nitrite in its structure releases NO inside the vascular smooth muscle cell. This ruthenium complex releases significant amounts of NO only in the presence of the aortic tissue. Reduction of nitrite to NO is most probably dependent on the soluble guanylyl-cyclase enzyme, since NO release is inhibited by ODQ.


Assuntos
Aorta Torácica/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico/metabolismo , Pró-Fármacos/farmacologia , Vasodilatadores/farmacologia , Animais , Guanilato Ciclase/antagonistas & inibidores , Guanilato Ciclase/metabolismo , Técnicas In Vitro , Masculino , Doadores de Óxido Nítrico/uso terapêutico , Oxidiazóis/farmacologia , Fenilefrina/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Pró-Fármacos/uso terapêutico , Quinoxalinas/farmacologia , Ratos , Ratos Wistar , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Compostos de Rutênio/metabolismo , Guanilil Ciclase Solúvel , Vasodilatação , Vasodilatadores/uso terapêutico
14.
Front Physiol ; 12: 656460, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177612

RESUMO

This study aimed to investigate the antiproteinuric and hyperkalemic mechanisms activated by dual renin-angiotensin system (RAS) blockade in renovascular hypertensive rats (2-kidney 1-clip model [2K-1C]). Six weeks after clipping the left renal artery or sham operation (2K), rats were treated with losartan, enalapril, or both drugs for two weeks. We found that 2K-1C rats displayed higher tail-cuff blood pressure (BP), increased non-clipped kidney Ang II concentration, and more pronounced urinary albumin excretion than 2K. BP was decreased by the treatment with either enalapril or losartan, and the combination of both drugs promoted an additional antihypertensive effect in 2K-1C rats. Renal Ang II content and albuminuria were reduced by either enalapril or losartan in monotherapy and restored to control levels by dual RAS blockade. Albuminuria in 2K-1C rats was accompanied by downregulation of the glomerular slit protein podocin, reduction of the endocytic receptors megalin and cubilin, and a marked decrease in the expression of the ClC-5 chloride channel, compared to 2K animals. Treatment with losartan and enalapril in monotherapy or combination increased the expression of podocin, cubilin, and ClC-5. However, only the combined therapy normalized podocin, cubilin, and ClC-5 protein abundance in the non-clipped kidney of 2K-1C rats. Renovascular hypertensive 2K-1C rats had a lower concentration of plasma potassium compared to 2K rats. Single RAS blockade normalized potassium plasma concentration, whereas 2K-1C rats treated with dual RAS blockade exhibited hyperkalemia. Hypokalemia in 2K-1C rats was accompanied by an increase in the cleaved activated forms of α-ENaC and γ-ENaC and the expression of ß-ENaC. Combined RAS blockade but not monotherapy significantly reduced the expression of these ENaC subunits in 2K-1C rats. Indeed, double RAS blockade reduced the abundance of cleaved-α-ENaC to levels lower than those of 2K rats. Collectively, these results demonstrate that the antiproteinuric effect of dual RAS blockade in 2K-1C rats is associated with the restored abundance of podocin and cubilin, and ClC-5. Moreover, double RAS blockade-induced hyperkalemia may be due, at least partially, to an exaggerated downregulation of cleaved α-ENaC in the non-clipped kidney of renovascular hypertensive rats.

15.
Curr Pharm Des ; 26(30): 3748-3759, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32427079

RESUMO

Endothelial dysfunction and consequent vasoconstriction are a common condition in patients with hypertension and other cardiovascular diseases. Endothelial cells produce and release vasodilator substances that play a pivotal role in normal vascular tone. The mechanisms underlying endothelial dysfunction are multifactorial. However, enhanced reactive oxygen species (ROS) production and consequent vasoconstriction instead of endothelium-derived relaxant generation and consequent vasodilatation contribute to this dysfunction considerably. The main targets of the drugs that are currently used to treat vascular diseases concerning enzyme activities and protein functions that are impaired by endothelial nitric oxide synthase (eNOS) uncoupling and ROS production. Nitric oxide (NO) bioavailability can decrease due to deficient NO production by eNOS and/or NO release to vascular smooth muscle cells, which impairs endothelial function. Considering the NO cellular mechanisms, tackling the issue of eNOS uncoupling could avoid endothelial dysfunction: provision of the enzyme cofactor tetrahydrobiopterin (BH4) should elicit NO release from NO donors, to activate soluble guanylyl cyclase. This should increase cyclic guanosine-monophosphate (cGMP) generation and inhibit phosphodiesterases (especially PDE5) that selectively degrade cGMP. Consequently, protein kinase-G should be activated, and K+ channels should be phosphorylated and activated, which is crucial for cell membrane hyperpolarization and vasodilation and/or inhibition of ROS production. The present review summarizes the current concepts about the vascular cellular mechanisms that underlie endothelial dysfunction and which could be the target of drugs for the treatment of patients with cardiovascular disease.


Assuntos
Preparações Farmacêuticas , Doenças Vasculares , Células Endoteliais , Endotélio Vascular , Humanos , Óxido Nítrico , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo III , Doenças Vasculares/tratamento farmacológico , Vasodilatação
16.
Nitric Oxide ; 20(3): 207-16, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19291838

RESUMO

Nitric oxide (NO) in NTS plays an important role in regulating autonomic function to the cardiovascular system. Using the fluorescent dye DAF-2 DA, we evaluated the NO concentration in NTS. Brainstem slices of rats were loaded with DAF-2 DA, washed, fixed in paraformaldehyde and examined under fluorescent light. In different experimental groups, NTS slices were pre-incubated with 1 mM l-NAME (a non-selective NOS inhibitor), 1 mM d-NAME (an inactive enantiomere of l-NAME), 1 mM kynurenic acid (a non-selective ionotropic receptors antagonist) or 20 microM bicuculline (a selective GABAA receptors antagonist) before and during DAF-2 DA loading. Images were acquired using a confocal microscope and the intensity of fluorescence was quantified in three antero-posterior NTS regions. In addition, slices previously loaded with DAF-2 DA were incubated with NeuN or GFAP antibody. A semi-quantitative analysis of the fluorescence intensity showed that the basal NO concentration was similar in all antero-posterior aspects of the NTS (rostral intermediate, 15.5 +/- 0.8 AU; caudal intermediate, 13.2 +/- 1.4 AU; caudal commissural, 13.8 +/- 1.4 AU, n = 10). In addition, the inhibition of NOS and the antagonism of glutamatergic receptors decreased the NO fluorescence in the NTS. On the other hand, d-NAME did not affect the NO fluorescence and the antagonism of GABAA receptors increased the NO fluorescence in the NTS. It is important to note that the fluorescence for NO was detected mainly in neurons. These data show that the fluorescence observed after NTS loading with DAF-2 DA is a result of NO present in the NTS and support the concept that NTS neurons have basal NO production which is modulated by l-glutamate and GABA.


Assuntos
Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Óxido Nítrico/biossíntese , Ácido gama-Aminobutírico/metabolismo , Animais , Tronco Encefálico/metabolismo , Corantes Fluorescentes , Microscopia de Fluorescência , Óxido Nítrico/análise , Ratos
17.
Nitric Oxide ; 20(3): 195-9, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19114114

RESUMO

We have described a new compound (trans-[RuCl([15]aneN(4))NO](2+)), which in vitro releases NO by the action of a reducing agent such as catecholamines. We investigated the effect of this NO donor in lowering the mean arterial pressure (MAP) in severe and moderate renal hypertensive 2K-1C rats. MAP was measured before and after intravenous in bolus injection of the compound in conscious 2K-1C and normotensive (2K) rats. In the hypertensive rats (basal 196.70+/-8.70mmHg, n=5), the MAP was reduced in -34.25+/-13.50mmHg (P<0.05) 6h after administration of 10mmol/L/Kg of the compound in bolus. In normotensive rats the compound had no effect. We have also studied the effect of the injection of 0.1mmol/L/Kg in normotensive (basal 118.20+/-11.25mmHg, n=4), moderate (basal 160.90+/-2.30mmHg, n=6), and severe hypertensive rats (basal 202.46+/-16.74 mmHg, n=6). The compound at the dose of 0.1mmol/L/Kg did not have effect (P>0.05) on MAP of normotensive and moderate hypertensive rats. However, in the severe hypertensive rats (basal 202.46+/-16.70mmHg, n=6) there was a significant reduction on the MAP of -28.64+/-12.45mmHg. The NO donor reduced the MAP of all hypertensive rats in the dose of 10mmol/L/Kg and in the severe hypertensive rats at the dose of 0.1mmol/L/Kg. The compound was not cytotoxic to the rat aortic vascular smooth muscle cells in the concentration of 0.1mmol/L/Kg that produced the maximum relaxation.


Assuntos
Hipertensão/tratamento farmacológico , Doadores de Óxido Nítrico/uso terapêutico , Compostos Organometálicos/uso terapêutico , Rutênio/uso terapêutico , Animais , Anti-Hipertensivos/farmacologia , Aorta , Relação Dose-Resposta a Droga , Músculo Liso Vascular/citologia , Ratos , Ratos Endogâmicos , Vasodilatação/efeitos dos fármacos
18.
Vascul Pharmacol ; 50(3-4): 98-103, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19056515

RESUMO

The perivascular nerve network expresses a Ca2+ receptor that is activated by high extracellular Ca2+ concentrations and causes vasorelaxation in resistance arteries. We have verified the influence of perivascular nerve fibers on the Ca2+-induced relaxation in aortic rings. To test our hypothesis, either pre-contracted aortas isolated from rats after sensory denervation with capsaicin or aortic rings acutely denervated with phenol were stimulated to relax with increasing extracellular Ca2+ concentration. We also studied the role of the endothelium on the Ca2+-induced relaxation, and we verified the participation of endothelial/nonendothelial nitric oxide and cyclooxygenase-arachidonic acid metabolites. Additionally, the role of the sarcoplasmic reticulum, K+ channels and L-type Ca2+ channels on the Ca2+-induced relaxation were evaluated. We have observed that the Ca2+-induced relaxation is completely nerve independent, and it is potentiated by endothelial nitric oxide (NO). In endothelium-denuded aortic rings, indomethacin and AH6809 (PGF2alpha receptor antagonist) enhance the relaxing response to Ca2+. This relaxation is inhibited by thapsigargin and verapamil, while was not altered by tetraethylammonium. In conclusion, we have shown that perivascular nervous fibers do not participate in the Ca2+-induced relaxation, which is potentiated by endothelial NO. In endothelium-denuded preparations, indomethacin and AH6809 enhance the relaxation induced by Ca2+. The relaxing response to Ca2+ was impaired by verapamil and thapsigargin, revealing the importance of L-type Ca2+ channels and sarcoplasmic reticulum in this response.


Assuntos
Aorta Torácica/fisiologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Cálcio/fisiologia , Retículo Sarcoplasmático/efeitos dos fármacos , Vasodilatação/fisiologia , Animais , Aorta Torácica/inervação , Ácido Araquidônico/metabolismo , Cálcio/administração & dosagem , Endotélio Vascular/fisiologia , Líquido Extracelular/metabolismo , Técnicas In Vitro , Masculino , Denervação Muscular , Óxido Nítrico/fisiologia , Prostaglandina-Endoperóxido Sintases/metabolismo , Ratos , Ratos Wistar , Vasodilatação/efeitos dos fármacos
19.
Arch Toxicol ; 83(5): 439-49, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18836702

RESUMO

Lead exposure increases blood pressure (BP) by unknown mechanisms. Many recent studies have shown the involvement of matrix metalloproteinases (MMPs) in hypertension, particularly MMP-2. In this work, we have examined whether MMP-2 levels increase with lead-induced increase in BP. We have also investigated whether doxycycline (an MMP inhibitor) affects these alterations. To this end, rats were exposed to lead (90 ppm) and treated with doxycycline or vehicle for 8 weeks. Similar aortic and whole blood lead levels were found in lead-exposed rats treated with either doxycycline or vehicle. Lead-induced increases in BP and aortic MMP-2 levels (activity, protein, and mRNA) were blunted by doxycycline. Doxycycline also prevented lead-induced increases in the MMP-2/TIMP-2 mRNA ratio. No significant changes in vascular reactivity or morphometric parameters were found. In conclusion, lead exposure increases BP and vascular MMP-2, which is blunted by doxycycline. This observation suggests that MMP-2 may play a role in lead-induced increases in BP.


Assuntos
Hipertensão/fisiopatologia , Chumbo/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Animais , Aorta Torácica/enzimologia , Aorta Torácica/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Determinação da Pressão Arterial/métodos , Relação Dose-Resposta a Droga , Doxiciclina/farmacologia , Inibidores Enzimáticos/farmacologia , Expressão Gênica , Chumbo/sangue , Masculino , Metaloproteinase 2 da Matriz/genética , Inibidores de Metaloproteinases de Matriz , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar , Padrões de Referência , Fatores de Tempo , Inibidor Tecidual de Metaloproteinase-2/metabolismo
20.
Cardiovasc Res ; 80(1): 123-30, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18593691

RESUMO

AIMS: Following sinoaortic denervation (SAD), isolated rat aortas present oscillatory contractions and demonstrate a heightened contraction for alpha-adrenergic agonists. Our aim was to verify the effects of SAD on connexin43 (Cx43) expression and phenylephrine-induced contraction in isolated aortas. METHODS AND RESULTS: Three days after surgery (SAD or sham operation), isolated aortic rings were exposed to phenylephrine and acetylcholine (0.1-10 microM) in the presence or absence of the gap junction blocker 18beta-glycyrrhetinic acid (18beta-GA, 100 microM). Vascular reactivity to potassium chloride (KCl, 4.7-120 mM) was also examined. The incidence of rats presenting oscillatory contractions was measured. Effects of SAD on the vascular smooth muscle expression of the Cx43 mRNA by RT-PCR and western blotting for Cx43 protein were examined. Phenylephrine-induced contraction was higher in SAD rat aortas compared with the control. In the presence of 18beta-GA, the response to phenylephrine was similar in both groups. Oscillatory contractions were observed in 10/10 SAD rat aortas vs. 2/10 controls. Relaxing response to acetylcholine was similar in both groups, but in the presence of 18beta-GA, the response to acetylcholine decreased significantly in the sham-operated group (82.7 +/- 7.6% reduction of relaxation), whereas a half-maximal relaxation (reduction of 46.2 +/- 5.3%) took place in SAD rat aortas. KCl-induced contraction was similar in both groups. Following SAD, RT-PCR revealed significantly increased levels of Cx43 mRNA (9.85 fold, P < 0.01). Western blot analysis revealed greater levels of Cx43 protein (P < 0.05). CONCLUSION: Blood pressure variability evoked by SAD leads to increased expression of Cx43, which could contribute to enhanced phenylephrine-induced contraction and oscillatory activity in isolated aortas.


Assuntos
Aorta Torácica/metabolismo , Pressão Sanguínea , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Músculo Liso Vascular/metabolismo , Animais , Aorta Torácica/inervação , Comunicação Celular , Denervação , Expressão Gênica , Masculino , Ratos , Ratos Wistar , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA