Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Transl Med ; 16(768): eadj7552, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39383242

RESUMO

Myeloproliferative neoplasms are stem cell-driven cancers associated with a large burden of morbidity and mortality. Most patients present with early-stage disease, but a substantial proportion progress to myelofibrosis or secondary leukemia, advanced cancers with a poor prognosis and high symptom burden. Currently, it remains difficult to predict progression, and therapies that reliably prevent or reverse fibrosis are lacking. A major bottleneck to the discovery of disease-modifying therapies has been an incomplete understanding of the interplay between perturbed cellular and molecular states. Several cell types have individually been implicated, but a comprehensive analysis of myelofibrotic bone marrow is lacking. We therefore mapped the cross-talk between bone marrow cell types in myelofibrotic bone marrow. We found that inflammation and fibrosis are orchestrated by a "quartet" of immune and stromal cell lineages, with basophils and mast cells creating a TNF signaling hub, communicating with megakaryocytes, mesenchymal stromal cells, and proinflammatory fibroblasts. We identified the ß-galactoside-binding protein galectin-1 as a biomarker of progression to myelofibrosis and poor survival in multiple patient cohorts and as a promising therapeutic target, with reduced myeloproliferation and fibrosis in vitro and in vivo and improved survival after galectin-1 inhibition. In human bone marrow organoids, TNF increased galectin-1 expression, suggesting a feedback loop wherein the proinflammatory myeloproliferative neoplasm clone creates a self-reinforcing niche, fueling progression to advanced disease. This study provides a resource for studying hematopoietic cell-niche interactions, with relevance for cancer-associated inflammation and disorders of tissue fibrosis.


Assuntos
Galectina 1 , Inflamação , Mielofibrose Primária , Nicho de Células-Tronco , Humanos , Mielofibrose Primária/metabolismo , Mielofibrose Primária/patologia , Galectina 1/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Animais , Medula Óssea/patologia , Medula Óssea/metabolismo , Transdução de Sinais , Camundongos , Progressão da Doença
2.
Leukemia ; 37(6): 1287-1297, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37100881

RESUMO

Heterozygous mutation targeting proline 95 in Serine/Arginine-rich Splicing Factor 2 (SRSF2) is associated with V617F mutation in Janus Activated Kinase 2 (JAK2) in some myeloproliferative neoplasms (MPNs), most commonly primary myelofibrosis. To explore the interaction of Srsf2P95H with Jak2V617F, we generated Cre-inducible knock-in mice expressing these mutants under control of the stem cell leukemia (Scl) gene promoter. In transplantation experiments, Srsf2P95H unexpectedly delayed myelofibrosis induced by Jak2V617F and decreased TGFß1 serum level. Srsf2P95H reduced the competitiveness of transplanted Jak2V617F hematopoietic stem cells while preventing their exhaustion. RNA sequencing of sorted megakaryocytes identified an increased number of splicing events when the two mutations were combined. Focusing on JAK/STAT pathway, Jak2 exon 14 skipping was promoted by Srsf2P95H, an event detected in patients with JAK2V617F and SRSF2P95 co-mutation. The skipping event generates a truncated inactive JAK2 protein. Accordingly, Srsf2P95H delays myelofibrosis induced by the thrombopoietin receptor agonist Romiplostim in Jak2 wild-type animals. These results unveil JAK2 exon 14 skipping promotion as a strategy to reduce JAK/STAT signaling in pathological conditions.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Transtornos Mieloproliferativos , Mielofibrose Primária , Animais , Camundongos , Janus Quinase 2/genética , Janus Quinases/genética , Mutação , Transtornos Mieloproliferativos/genética , Mielofibrose Primária/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Fatores de Transcrição STAT/genética
3.
Int Rev Cell Mol Biol ; 366: 125-185, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35153003

RESUMO

Over the past decades, a variety of MPN mouse models have been developed to express in HSC the main mutations identified in patients: JAK2V617F, CALRdel52 or ins5 and MPLW515L. These models mimic quite faithfully human PV or ET with their natural evolutions into MF and their hemostasis complications, demonstrating the driver function of these mutations in MPN. Here, we review these models and show how they have improved our general understanding of MPN regarding (1) the mechanisms of fibrosis, thrombosis/hemorrhages and disease initiation, (2) the roles of additional mutations and signaling pathways in disease progression and (3) the preclinical development of novel therapies. We also address controversial results between these models and remind how these models may differ from human MPN onset and also how basically mice are not humans, encouraging caution when one draw lessons from mice to humans. Furthermore, the contribution of germline genetic predisposition, HSC and niche aging, metabolic, oxidative, replicative or genotoxic stress, inflammation, immune escape and additional mutations need to be considered in further investigations to encompass the full complexity of human MPN in mice.


Assuntos
Trombocitemia Essencial , Animais , Modelos Animais de Doenças , Progressão da Doença , Predisposição Genética para Doença , Humanos , Camundongos , Mutação , Receptores de Trombopoetina/genética , Trombocitemia Essencial/genética
4.
Elife ; 102021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34002698

RESUMO

High-throughput single-cell methods have uncovered substantial heterogeneity in the pool of hematopoietic stem and progenitor cells (HSPCs), but how much instruction is inherited by offspring from their heterogeneous ancestors remains unanswered. Using a method that enables simultaneous determination of common ancestor, division number, and differentiation status of a large collection of single cells, our data revealed that murine cells that derived from a common ancestor had significant similarities in their division progression and differentiation outcomes. Although each family diversifies, the overall collection of cell types observed is composed of homogeneous families. Heterogeneity between families could be explained, in part, by differences in ancestral expression of cell surface markers. Our analyses demonstrate that fate decisions of cells are largely inherited from ancestor cells, indicating the importance of common ancestor effects. These results may have ramifications for bone marrow transplantation and leukemia, where substantial heterogeneity in HSPC behavior is observed.


Assuntos
Diferenciação Celular , Proliferação de Células , Células-Tronco Hematopoéticas/fisiologia , Animais , Medula Óssea , Células da Medula Óssea , Células Cultivadas , Células-Tronco Hematopoéticas/classificação , Camundongos , Camundongos Endogâmicos C57BL
5.
Nat Commun ; 11(1): 4886, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985500

RESUMO

Somatic mutations in the calreticulin (CALR) gene are associated with approximately 30% of essential thrombocythemia (ET) and primary myelofibrosis (PMF). CALR mutations, including the two most frequent 52 bp deletion (del52) and 5 bp insertion (ins5), induce a frameshift to the same alternative reading frame generating new C-terminal tails. In patients, del52 and ins5 induce two phenotypically distinct myeloproliferative neoplasms (MPNs). They are equally found in ET, but del52 is more frequent in PMF. We generated heterozygous and homozygous conditional inducible knock-in (KI) mice expressing a chimeric murine CALR del52 or ins5 with the human mutated C-terminal tail to investigate their pathogenic effects on hematopoiesis. Del52 induces greater phenotypic changes than ins5 including thrombocytosis, leukocytosis, splenomegaly, bone marrow hypocellularity, megakaryocytic lineage amplification, expansion and competitive advantage of the hematopoietic stem cell compartment. Homozygosity amplifies these features, suggesting a distinct contribution of homozygous clones to human MPNs. Moreover, homozygous del52 KI mice display features of a penetrant myelofibrosis-like disorder with extramedullary hematopoiesis linked to splenomegaly, megakaryocyte hyperplasia and the presence of reticulin fibers. Overall, modeling del52 and ins5 mutations in mice successfully recapitulates the differences in phenotypes observed in patients.


Assuntos
Calreticulina/genética , Mielofibrose Primária/genética , Trombocitemia Essencial/genética , Animais , Calreticulina/metabolismo , Modelos Animais de Doenças , Feminino , Células-Tronco Hematopoéticas/metabolismo , Homozigoto , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Insercional , Fenótipo , Mielofibrose Primária/metabolismo , Deleção de Sequência , Trombocitemia Essencial/metabolismo
6.
Curr Alzheimer Res ; 16(11): 986-1006, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31692443

RESUMO

BACKGROUND: Diabetes is considered as a risk factor for Alzheimer's Disease, but it is yet unclear whether this pathological link is reciprocal. Although Alzheimer's disease and diabetes appear as entirely different pathological entities affecting the Central Nervous System and a peripheral organ (pancreas), respectively, they share a common pathological core. Recent evidence suggests that in the pancreas in the case of diabetes, as in the brain for Alzheimer's Disease, the initial pathological event may be the accumulation of toxic proteins yielding amyloidosis. Moreover, in both pathologies, amyloidosis is likely responsible for local inflammation, which acts as a driving force for cell death and tissue degeneration. These pathological events are all inter-connected and establish a vicious cycle resulting in the progressive character of both pathologies. OBJECTIVE: To address the literature supporting the hypothesis of a common pathological core for both diseases. DISCUSSION: We will focus on the analogies and differences between the disease-related inflammatory changes in a peripheral organ, such as the pancreas, versus those observed in the brain. Recent evidence suggesting an impact of peripheral inflammation on neuroinflammation in Alzheimer's disease will be presented. CONCLUSION: We propose that it is now necessary to consider whether neuroinflammation in Alzheimer's disease affects inflammation in the pancreas related to diabetes.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Diabetes Mellitus Tipo 2/patologia , Inflamação/patologia , Pâncreas/patologia , Idoso , Doença de Alzheimer/etiologia , Amiloidose/complicações , Amiloidose/patologia , Diabetes Mellitus Tipo 2/etiologia , Feminino , Humanos , Inflamação/complicações , Masculino , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA