Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Annu Rev Pharmacol Toxicol ; 63: 617-636, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36662585

RESUMO

Phosphatases and kinases maintain an equilibrium of dephosphorylated and phosphorylated proteins, respectively, that are required for critical cellular functions. Imbalance in this equilibrium or irregularity in their function causes unfavorable cellular effects that have been implicated in the development of numerous diseases. Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of protein substrates on tyrosine residues, and their involvement in cell signaling and diseases such as cancer and inflammatory and metabolic diseases has made them attractive therapeutic targets. However, PTPs have proved challenging in therapeutics development, garnering them the unfavorable reputation of being undruggable. Nonetheless, great strides have been made toward the inhibition of PTPs over the past decade. Here, we discuss the advancement in small-molecule inhibition for the PTP subfamily known as the mitogen-activated protein kinase (MAPK) phosphatases (MKPs). We review strategies and inhibitor discovery tools that have proven successful for small-molecule inhibition of the MKPs and discuss what the future of MKP inhibition potentially might yield.


Assuntos
Fosfatases da Proteína Quinase Ativada por Mitógeno , Humanos , Fosfatases da Proteína Quinase Ativada por Mitógeno/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais , /farmacologia
2.
Genes Dev ; 31(16): 1655-1665, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28903979

RESUMO

Starvation induces liver autophagy, which is thought to provide nutrients for use by other organs and thereby maintain whole-body homeostasis. Here we demonstrate that O-linked ß-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is required for glucagon-stimulated liver autophagy and metabolic adaptation to starvation. Genetic ablation of OGT in mouse livers reduces autophagic flux and the production of glucose and ketone bodies. Upon glucagon-induced calcium signaling, calcium/calmodulin-dependent kinase II (CaMKII) phosphorylates OGT, which in turn promotes O-GlcNAc modification and activation of Ulk proteins by potentiating AMPK-dependent phosphorylation. These findings uncover a signaling cascade by which starvation promotes autophagy through OGT phosphorylation and establish the importance of O-GlcNAc signaling in coupling liver autophagy to nutrient homeostasis.


Assuntos
Autofagia , Sinalização do Cálcio , Fígado/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Fenômenos Fisiológicos da Nutrição , Adaptação Biológica , Animais , Proteína 5 Relacionada à Autofagia/fisiologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Glucagon/farmacologia , Células HEK293 , Células HeLa , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia , Camundongos Endogâmicos C57BL , N-Acetilglucosaminiltransferases/fisiologia
3.
Diabetologia ; 67(4): 724-737, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38216792

RESUMO

AIM/HYPOTHESIS: The peroxisome proliferator-activated receptor-γ coactivator α (PGC-1α) plays a critical role in the maintenance of glucose, lipid and energy homeostasis by orchestrating metabolic programs in multiple tissues in response to environmental cues. In skeletal muscles, PGC-1α dysregulation has been associated with insulin resistance and type 2 diabetes but the underlying mechanisms have remained elusive. This research aims to understand the role of TET3, a member of the ten-eleven translocation (TET) family dioxygenases, in PGC-1α dysregulation in skeletal muscles in obesity and diabetes. METHODS: TET expression levels in skeletal muscles were analysed in humans with or without type 2 diabetes, as well as in mouse models of high-fat diet (HFD)-induced or genetically induced (ob/ob) obesity/diabetes. Muscle-specific Tet3 knockout (mKD) mice were generated to study TET3's role in muscle insulin sensitivity. Genome-wide expression profiling (RNA-seq) of muscle tissues from wild-type (WT) and mKD mice was performed to mine deeper insights into TET3-mediated regulation of muscle insulin sensitivity. The correlation between PGC-1α and TET3 expression levels was investigated using muscle tissues and in vitro-derived myotubes. PGC-1α phosphorylation and degradation were analysed using in vitro assays. RESULTS: TET3 expression was elevated in skeletal muscles of humans with type 2 diabetes and in HFD-fed and ob/ob mice compared with healthy controls. mKD mice exhibited enhanced glucose tolerance, insulin sensitivity and resilience to HFD-induced insulin resistance. Pathway analysis of RNA-seq identified 'Mitochondrial Function' and 'PPARα Pathway' to be among the top biological processes regulated by TET3. We observed higher PGC-1α levels (~25%) in muscles of mKD mice vs WT mice, and lower PGC-1α protein levels (~25-60%) in HFD-fed or ob/ob mice compared with their control counterparts. In human and murine myotubes, increased PGC-1α levels following TET3 knockdown contributed to improved mitochondrial respiration and insulin sensitivity. TET3 formed a complex with PGC-1α and interfered with its phosphorylation, leading to its destabilisation. CONCLUSIONS/INTERPRETATION: Our results demonstrate an essential role for TET3 in the regulation of skeletal muscle insulin sensitivity and suggest that TET3 may be used as a potential therapeutic target for the metabolic syndrome. DATA AVAILABILITY: Sequences are available from the Gene Expression Omnibus ( https://www.ncbi.nlm.nih.gov/geo/ ) with accession number of GSE224042.


Assuntos
Diabetes Mellitus Tipo 2 , Dioxigenases , Resistência à Insulina , Animais , Humanos , Camundongos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dioxigenases/metabolismo , Glucose/metabolismo , Resistência à Insulina/genética , Músculo Esquelético/metabolismo , Obesidade/genética , Obesidade/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
J Biol Chem ; 299(5): 104731, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37080392

RESUMO

The identification of substrates for protein tyrosine phosphatases (PTPs) is critical for a complete understanding of how these enzymes function. In a recent study in the JBC, Bonham et al. developed a modified method combining substrate-trapping mutations with proximity-labeling MS to identify the protein substrates and interactors of PTP1B. This method revealed interaction networks in breast cancer cell models and discovered novel targets of PTP1B that regulate HER2 signaling pathways. This strategy represents a versatile new tool for identifying the functional interactions between PTPs and their substrates.


Assuntos
Proteínas Tirosina Fosfatases , Transdução de Sinais , Fosforilação , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Proteínas/metabolismo , Mutação , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Especificidade por Substrato
5.
Am J Med Genet A ; 194(4): e63477, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37969032

RESUMO

Germline pathogenic variants in the RAS/mitogen-activated protein kinase (MAPK) signaling pathway are the molecular cause of RASopathies, a group of clinically overlapping genetic syndromes. RASopathies constitute a wide clinical spectrum characterized by distinct facial features, short stature, predisposition to cancer, and variable anomalies in nearly all the major body systems. With increasing global recognition of these conditions, the 8th International RASopathies Symposium spotlighted global perspectives on clinical care and research, including strategies for building international collaborations and developing diverse patient cohorts in anticipation of interventional trials. This biannual meeting, organized by RASopathies Network, was held in a hybrid virtual/in-person format. The agenda featured emerging discoveries and case findings as well as progress in preclinical and therapeutic pipelines. Stakeholders including basic scientists, clinician-scientists, practitioners, industry representatives, patients, and family advocates gathered to discuss cutting edge science, recognize current gaps in knowledge, and hear from people with RASopathies about the experience of daily living. Presentations by RASopathy self-advocates and early-stage investigators were featured throughout the program to encourage a sustainable, diverse, long-term research and advocacy partnership focused on improving health and bringing treatments to people with RASopathies.


Assuntos
Síndrome de Costello , Displasia Ectodérmica , Cardiopatias Congênitas , Neoplasias , Síndrome de Noonan , Humanos , Proteínas ras/genética , Sistema de Sinalização das MAP Quinases/genética , Síndrome de Costello/genética , Neoplasias/genética , Displasia Ectodérmica/genética , Síndrome de Noonan/genética , Cardiopatias Congênitas/genética
6.
J Biol Chem ; 298(12): 102617, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36272649

RESUMO

The dual-specificity phosphatases responsible for the inactivation of the mitogen-activated protein kinases (MAPKs) are designated as the MAPK phosphatases (MKPs). We demonstrated previously that MKP5 is regulated through a novel allosteric site suggesting additional regulatory mechanisms of catalysis exist amongst the MKPs. Here, we sought to determine whether the equivalent site within the phosphatase domain of a highly similar MKP family member, MKP7, is also important for phosphatase function. We found that mutation of tyrosine 271 (Y271) in MKP7, which represents the comparable Y435 within the MKP5 allosteric pocket, inhibited MKP7 catalytic activity. Consistent with this, when MKP7 Y271 mutants were overexpressed in cells, the substrates of MKP7, p38 MAPK or JNK, failed to undergo dephosphorylation. The binding efficiency of MKP7 to p38 MAPK and JNK1/2 was also reduced when MKP7 Y271 is mutated. Consistent with reduced MAPK binding, we observed a greater accumulation of nuclear p38 MAPK and JNK when the MKP7 Y271 mutants are expressed in cells as compared with WT MKP7, which sequesters p38 MAPK/JNK in the cytoplasm. Therefore, we propose that Y271 is critical for effective MAPK dephosphorylation through a mechanism whereby binding to this residue precedes engagement of the catalytic site and upon overexpression, MKP7 allosteric site mutants potentiate MAPK signaling. These results provide insight into the regulatory mechanisms of MKP7 catalysis and interactions with the MAPKs. Furthermore, these data support the generality of the MKP allosteric site and provide a basis for small molecule targeting of MKP7.


Assuntos
Fosfatases de Especificidade Dupla , Fosfatases da Proteína Quinase Ativada por Mitógeno , Proteínas Tirosina Fosfatases , Catálise , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Tirosina Fosfatases/metabolismo , Humanos , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo
7.
Cardiovasc Drugs Ther ; 37(6): 1193-1204, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35156148

RESUMO

The RAS/mitogen-activated protein kinase (MAPK) pathway controls a plethora of developmental and post-developmental processes. It is now clear that mutations in the RAS-MAPK pathway cause developmental diseases collectively referred to as the RASopathies. The RASopathies include Noonan syndrome, Noonan syndrome with multiple lentigines, cardiofaciocutaneous syndrome, neurofibromatosis type 1, and Costello syndrome. RASopathy patients exhibit a wide spectrum of congenital heart defects (CHD), such as valvular abnormalities and hypertrophic cardiomyopathy (HCM). Since the cardiovascular defects are the most serious and recurrent cause of mortality in RASopathy patients, it is critical to understand the pathological signaling mechanisms that drive the disease. Therapies for the treatment of HCM and other RASopathy-associated comorbidities have yet to be fully realized. Recent developments have shown promise for the use of repurposed antineoplastic drugs that target the RAS-MAPK pathway for the treatment of RASopathy-associated HCM. However, given the impact of the RAS-MAPK pathway in post-developmental physiology, establishing safety and evaluating risk when treating children will be paramount. As such insight provided by preclinical and clinical information will be critical. This review will highlight the cardiovascular manifestations caused by the RASopathies and will discuss the emerging therapies for treatment.


Assuntos
Síndrome de Costello , Displasia Ectodérmica , Cardiopatias Congênitas , Síndrome de Noonan , Criança , Humanos , Cardiopatias Congênitas/tratamento farmacológico , Cardiopatias Congênitas/genética , Síndrome de Noonan/tratamento farmacológico , Síndrome de Noonan/genética , Síndrome de Costello/genética , Insuficiência de Crescimento/tratamento farmacológico , Insuficiência de Crescimento/genética , Displasia Ectodérmica/genética
8.
Am J Med Genet A ; 188(6): 1915-1927, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35266292

RESUMO

RASopathies are a group of genetic disorders that are caused by genes that affect the canonical Ras/mitogen-activated protein kinase (MAPK) signaling pathway. Despite tremendous progress in understanding the molecular consequences of these genetic anomalies, little movement has been made in translating these findings to the clinic. This year, the seventh International RASopathies Symposium focused on expanding the research knowledge that we have gained over the years to enhance new discoveries in the field, ones that we hope can lead to effective therapeutic treatments. Indeed, for the first time, research efforts are finally being translated to the clinic, with compassionate use of Ras/MAPK pathway inhibitors for the treatment of RASopathies. This biannual meeting, organized by the RASopathies Network, brought together basic scientists, clinicians, clinician scientists, patients, advocates, and their families, as well as representatives from pharmaceutical companies and the National Institutes of Health. A history of RASopathy gene discovery, identification of new disease genes, and the latest research, both at the bench and in the clinic, were discussed.


Assuntos
Síndrome de Costello , Síndrome de Noonan , Síndrome de Costello/genética , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Síndrome de Noonan/genética , Transdução de Sinais , Proteínas ras/genética , Proteínas ras/metabolismo
9.
Cardiovasc Drugs Ther ; 36(4): 589-604, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33689087

RESUMO

PURPOSE: Noonan syndrome with multiple lentigines (NSML) is an autosomal dominant disorder presenting with hypertrophic cardiomyopathy (HCM). Up to 85% of NSML cases are caused by mutations in the PTPN11 gene that encodes for the Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 2 (SHP2). We previously showed that low-dose dasatinib protects from the development of cardiac fibrosis in a mouse model of NSML harboring a Ptpn11Y279C mutation. This study is performed to determine the pharmacokinetic (PK) and pharmacodynamic (PD) properties of a low-dose of dasatinib in NSML mice and to determine its effectiveness in ameliorating the development of HCM. METHODS: Dasatinib was administered intraperitoneally into NSML mice with doses ranging from 0.05 to 0.5 mg/kg. PK parameters of dasatinib in NSML mice were determined. PD parameters were obtained for biochemical analyses from heart tissue. Dasatinib-treated NSML mice (0.1 mg/kg) were subjected to echocardiography and assessment of markers of HCM by qRT-PCR. Transcriptome analysis was performed from the heart tissue of low-dose dasatinib-treated mice. RESULTS: Low-dose dasatinib exhibited PK properties that were linear across doses in NSML mice. Dasatinib treatment of between 0.05 and 0.5 mg/kg in NSML mice yielded an exposure-dependent inhibition of c-Src and PZR tyrosyl phosphorylation and inhibited AKT phosphorylation. We found that doses as low as 0.1 mg/kg of dasatinib prevented HCM in NSML mice. Transcriptome analysis identified differentially expressed HCM-associated genes in the heart of NSML mice that were reverted to wild type levels by low-dose dasatinib administration. CONCLUSION: These data demonstrate that low-dose dasatinib exhibits desirable therapeutic PK properties that is sufficient for effective target engagement to ameliorate HCM progression in NSML mice. These data demonstrate that low-dose dasatinib treatment may be an effective therapy against HCM in NSML patients.


Assuntos
Cardiomiopatia Hipertrófica , Síndrome LEOPARD , Animais , Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/genética , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , Modelos Animais de Doenças , Síndrome LEOPARD/tratamento farmacológico , Síndrome LEOPARD/genética , Síndrome LEOPARD/metabolismo , Camundongos , Mutação
10.
Mol Cell ; 52(1): 101-12, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24055342

RESUMO

Abundantly expressed in fetal tissues and adult muscle, the developmentally regulated H19 long noncoding RNA (lncRNA) has been implicated in human genetic disorders and cancer. However, how H19 acts to regulate gene function has remained enigmatic, despite the recent implication of its encoded miR-675 in limiting placental growth. We noted that vertebrate H19 harbors both canonical and noncanonical binding sites for the let-7 family of microRNAs, which plays important roles in development, cancer, and metabolism. Using H19 knockdown and overexpression, combined with in vivo crosslinking and genome-wide transcriptome analysis, we demonstrate that H19 modulates let-7 availability by acting as a molecular sponge. The physiological significance of this interaction is highlighted in cultures in which H19 depletion causes precocious muscle differentiation, a phenotype recapitulated by let-7 overexpression. Our results reveal an unexpected mode of action of H19 and identify this lncRNA as an important regulator of the major let-7 family of microRNAs.


Assuntos
Impressão Genômica , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Sítios de Ligação , Diferenciação Celular , Biologia Computacional , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Genótipo , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , MicroRNAs/genética , Desenvolvimento Muscular , Mioblastos Esqueléticos/metabolismo , Fenótipo , Interferência de RNA , RNA Longo não Codificante/genética , Ribonucleoproteínas/metabolismo , Fatores de Tempo , Transfecção
11.
Am J Med Genet A ; 182(3): 597-606, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31825160

RESUMO

The RASopathies are a group of genetic disorders that result from germline pathogenic variants affecting RAS-mitogen activated protein kinase (MAPK) pathway genes. RASopathies share RAS/MAPK pathway dysregulation and share phenotypic manifestations affecting numerous organ systems, causing lifelong and at times life-limiting medical complications. RASopathies may benefit from precision medicine approaches. For this reason, the Sixth International RASopathies Symposium focused on exploring precision medicine. This meeting brought together basic science researchers, clinicians, clinician scientists, patient advocates, and representatives from pharmaceutical companies and the National Institutes of Health. Novel RASopathy genes, variants, and animal models were discussed in the context of medication trials and drug development. Attempts to define and measure meaningful endpoints for treatment trials were discussed, as was drug availability to patients after trial completion.


Assuntos
Doenças Genéticas Inatas/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas ras/genética , Doenças Genéticas Inatas/patologia , Mutação em Linhagem Germinativa/genética , Humanos , Transdução de Sinais/genética
12.
Am J Physiol Lung Cell Mol Physiol ; 317(5): L678-L689, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31483681

RESUMO

Mitogen-activated protein kinase (MAPK) phosphatase 5 (MKP-5) is a member of the dual-specificity family of protein tyrosine phosphatases that negatively regulates p38 MAPK and the JNK. MKP-5-deficient mice exhibit improved muscle repair and reduced fibrosis in an animal model of muscular dystrophy. Here, we asked whether the effects of MKP-5 on muscle fibrosis extend to other tissues. Using a bleomycin-induced model of pulmonary fibrosis, we found that MKP-5-deficient mice were protected from the development of lung fibrosis, expressed reduced levels of hydroxyproline and fibrogenic genes, and displayed marked polarization towards an M1-macrophage phenotype. We showed that the profibrogenic effects of the transforming growth factor-ß1 (TGF-ß1) were inhibited in MKP-5-deficient lung fibroblasts. MKP-5-deficient fibroblasts exhibited enhanced p38 MAPK activity, impaired Smad3 phosphorylation, increased Smad7 levels, and decreased expression of fibrogenic genes. Myofibroblast differentiation was attenuated in MKP-5-deficient fibroblasts. Finally, we found that MKP-5 expression was increased in idiopathic pulmonary fibrosis (IPF)-derived lung fibroblasts but not in whole IPF lungs. These data suggest that MKP-5 plays an essential role in promoting lung fibrosis. Our results couple MKP-5 with the TGF-ß1 signaling machinery and imply that MKP-5 inhibition may serve as a therapeutic target for human lung fibrosis.


Assuntos
Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/fisiologia , Fibroblastos/patologia , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Fibrose Pulmonar/patologia , Fator de Crescimento Transformador beta1/farmacologia , Animais , Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Fosfatases de Especificidade Dupla/genética , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosforilação , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Transdução de Sinais
13.
J Biol Chem ; 292(9): 3581-3590, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28096466

RESUMO

The mitogen-activated protein kinases (MAPKs) have been shown to regulate skeletal muscle function. Previously, we showed that MAPK phosphatase-5 (MKP-5) negatively regulates myogenesis and regeneration of skeletal muscle through inhibition of p38 MAPK and c-Jun N-terminal kinase (JNK). However, the identity and contribution of MKP-5-regulated MAPK targets in the control of skeletal muscle function and regenerative myogenesis have not been established. To identify MKP-5-regulated MAPK substrates in skeletal muscle, we performed a global differential phospho-MAPK substrate screen in regenerating skeletal muscles of wild type and MKP-5-deficient mice. We discovered a novel MKP-5-regulated MAPK substrate called guanine nucleotide exchange factor for Rab3A (GRAB) that was hyperphosphorylated on a phospho-MAPK motif in skeletal muscle of MKP-5-deficient mice. GRAB was found to be phosphorylated by JNK on serine 169. Myoblasts overexpressing a phosphorylation-defective mutant of GRAB containing a mutation at Ser-169 to Ala-169 (GRAB-S169A) inhibited the ability of C2C12 myoblasts to differentiate. We found that GRAB phosphorylation at Ser-169 was required for the secretion of the promyogenic cytokine interleukin 6 (IL-6). Consistent with this observation, MKP-5-deficient mice exhibited increased circulating IL-6 expression as compared with wild type mice. Collectively, these data demonstrate a novel mechanism whereby MKP-5-mediated regulation of JNK negatively regulates phosphorylation of GRAB, which subsequently controls secretion of IL-6. These data support the notion that MKP-5 serves as a negative regulator of MAPK-dependent signaling of critical skeletal muscle signaling pathways.


Assuntos
Fosfatases de Especificidade Dupla/metabolismo , Regulação Enzimológica da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Interleucina-6/metabolismo , Desenvolvimento Muscular , Proteína rab3A de Ligação ao GTP/metabolismo , Motivos de Aminoácidos , Animais , Movimento Celular , Proliferação de Células , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Mutação , Mioblastos/metabolismo , Fosforilação , Proteômica , Regeneração , Serina/química
14.
Am J Respir Crit Care Med ; 195(4): 500-514, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27736153

RESUMO

RATIONALE: Idiopathic pulmonary fibrosis (IPF) is a chronic fatal lung disease with dismal prognosis and no cure. The potential role of the ubiquitously expressed SH2 domain-containing tyrosine phosphatase-2 (SHP2) as a therapeutic target has not been studied in IPF. OBJECTIVES: To determine the expression, mechanistic role, and potential therapeutic usefulness of SHP2 in pulmonary fibrosis. METHODS: The effects of SHP2 overexpression and inhibition on fibroblast response to profibrotic stimuli were analyzed in vitro in primary human and mouse lung fibroblasts. In vivo therapeutic effects were assessed in the bleomycin model of lung fibrosis by SHP2-lentiviral administration and transgenic mice carrying a constitutively active SHP2 mutation. MEASUREMENTS AND MAIN RESULTS: SHP2 was down-regulated in lungs and lung fibroblasts obtained from patients with IPF. Immunolocalization studies revealed that SHP2 was absent within fibroblastic foci. Loss of SHP2 expression or activity was sufficient to induce fibroblast-to-myofibroblast differentiation in primary human lung fibroblasts. Overexpression of constitutively active SHP2 reduced the responsiveness of fibroblasts to profibrotic stimuli, including significant reductions in cell survival and myofibroblast differentiation. SHP2 effects were mediated through deactivation of fibrosis-relevant tyrosine kinase and serine/threonine kinase signaling pathways. Mice carrying the Noonan syndrome-associated gain-of-function SHP2 mutation (SHP2D61G/+) were resistant to bleomycin-induced pulmonary fibrosis. Restoration of SHP2 levels in vivo through lentiviral delivery blunted bleomycin-induced pulmonary fibrosis. CONCLUSIONS: Our data suggest that SHP2 is an important regulator of fibroblast differentiation, and its loss as observed in IPF facilitates profibrotic phenotypic changes. Augmentation of SHP2 activity or expression should be investigated as a novel therapeutic strategy for IPF.


Assuntos
Fibroblastos/patologia , Fibrose Pulmonar Idiopática/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Animais , Antibióticos Antineoplásicos/administração & dosagem , Biópsia , Bleomicina/administração & dosagem , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Humanos , Fibrose Pulmonar Idiopática/patologia , Imunoprecipitação/métodos , Camundongos , Camundongos Endogâmicos C57BL , Nitrofenóis/análise , Proteína Tirosina Fosfatase não Receptora Tipo 11/efeitos dos fármacos , Estatísticas não Paramétricas
15.
Semin Cell Dev Biol ; 37: 66-72, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25263013

RESUMO

Protein tyrosine phosphatases (PTPs) play a crucial role in the regulation of human health and it is now clear that PTP dysfunction is causal to a variety of human diseases. Research in the PTP field has accelerated dramatically over the last decade fueled by cutting-edge technologies in genomic and proteomic techniques. This system-wide non-biased approach when applied to the discovery of PTP function has led to the elucidation of new and unanticipated roles for the PTPs. These discoveries, driven by genomic and proteomic approaches, have uncovered novel PTP findings that range from those that describe fundamental cell signaling mechanisms to implications for PTPs as novel therapeutic targets for the treatment of human disease. This review will discuss how new PTP functions have been uncovered through studies that have utilized genomic and proteomic technologies and strategies.


Assuntos
Proteínas Tirosina Fosfatases/metabolismo , Animais , Doença/genética , Genômica , Humanos , Proteínas Tirosina Fosfatases/genética , Proteômica , Transdução de Sinais
16.
Am J Physiol Endocrinol Metab ; 307(11): E1057-64, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25315698

RESUMO

Inositol 1,4,5-trisphosphate receptor type II (InsP3R-II) is the most prevalent isoform of the InsP3R in hepatocytes and is concentrated under the canalicular membrane, where it plays an important role in bile secretion. We hypothesized that altered calcium (Ca(2+)) signaling may be involved in metabolic dysfunction, as InsP3R-mediated Ca(2+) signals have been implicated in the regulation of hepatic glucose homeostasis. Here, we find that InsP3R-II, but not InsP3R-I, is reduced in the livers of obese mice. In our investigation of the functional consequences of InsP3R-II deficiency, we found that organic anion secretion at the canalicular membrane and Ca(2+) signals were impaired. However, mice lacking InsP3R-II showed no deficits in energy balance, glucose production, glucose tolerance, or susceptibility to hepatic steatosis. Thus, our results suggest that reduced InsP3R-II expression is not sufficient to account for any disruptions in metabolic homeostasis that are observed in mouse models of obesity. We conclude that metabolic homeostasis is maintained independently of InsP3R-II. Loss of InsP3R-II does impair secretion of bile components; therefore, we suggest that conditions of obesity would lead to a decrease in this Ca(2+)-sensitive process.


Assuntos
Homeostase/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos Obesos/metabolismo , Animais , Bile/metabolismo , Composição Corporal/fisiologia , Sinalização do Cálcio/genética , Colesterol/metabolismo , Dieta Hiperlipídica , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Teste de Tolerância a Glucose , Hepatócitos/fisiologia , Masculino , Camundongos , Camundongos Knockout
17.
Cell Mol Life Sci ; 70(2): 223-37, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22695679

RESUMO

The balance of protein phosphorylation is achieved through the actions of a family of protein serine/threonine kinases called the mitogen-activated protein kinases (MAPKs). The propagation of MAPK signals is attenuated through the actions of the MAPK phosphatases (MKPs). The MKPs specifically inactivate the MAPKs by direct dephosphorylation. The archetypal MKP family member, MKP-1 has garnered much of the attention amongst its ten other MKP family members. Initially viewed to play a redundant role in the control of MAPK signaling, it is now clear that MKP-1 exerts profound regulatory functions on the immune, metabolic, musculoskeletal and nervous systems. This review focuses on the physiological functions of MKP-1 that have been revealed using mouse genetic approaches. The implications from studies using MKP-1-deficient mice to uncover the role of MKP-1 in disease will be discussed.


Assuntos
Fosfatase 1 de Especificidade Dupla/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Animais , Fosfatase 1 de Especificidade Dupla/genética , Humanos , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Neoplasias/metabolismo , Fosforilação , Transdução de Sinais
18.
bioRxiv ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38979264

RESUMO

Mitogen-activated protein kinase (MAPK) phosphatases (MKPs) constitute members of the dual-specificity family of protein phosphatases that dephosphorylate the MAPKs. MKP-5 dephosphorylates the stress-responsive MAPKs, p38 MAPK and JNK, and has been shown to promote tissue fibrosis. Here, we provide insight into how MKP-5 regulates the transforming growth factor-ß (TGF-ß) pathway, a well-established driver of fibrosis. We show that MKP-5-deficient fibroblasts in response to TGF-ß are impaired in SMAD2 phosphorylation at canonical and non-canonical sites, nuclear translocation, and transcriptional activation of fibrogenic genes. Consistent with this, pharmacological inhibition of MKP-5 is sufficient to block TGF-ß signaling, and that this regulation occurs through a JNK-dependent pathway. By utilizing RNA sequencing and transcriptomic analysis, we identify TGF-ß signaling activators regulated by MKP-5 in a JNK-dependent manner, providing mechanistic insight into how MKP-5 promotes TGF-ß signaling. This study elucidates a novel mechanism whereby MKP-5-mediated JNK inactivation is required for TGF-ß signaling and provides insight into the role of MKP-5 in fibrosis.

19.
Methods Mol Biol ; 2743: 123-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38147212

RESUMO

Protein tyrosine phosphorylation and dephosphorylation are key regulatory mechanisms in eukaryotes. Protein tyrosine phosphorylation and dephosphorylation are catalyzed by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), respectively. The combinatorial action of both PTKs and PTPs is essential for properly maintaining cellular functions. In this unit, we discuss different novel methods to identify PTP substrates. PTPs depend on specific invariant residues that enable binding to tyrosine-phosphorylated substrates and aid catalytic activity. Identifying PTP substrates has paved the way to understanding their role in distinct intracellular signaling pathways. Due to their high specific activity, the interaction between PTPs and their substrates is transient; therefore, identifying the physiological substrates of PTPs has been challenging. To identify the physiological substrates of PTPs, various PTP mutants have been generated. These PTP mutants, named "substrate-trapping mutants," lack catalytic activity but bind tightly to their tyrosine-phosphorylated substrates. Identifying the substrates for the PTPs will provide critical insight into the function of physiological and pathophysiological signal transduction. In this chapter, we describe interaction assays used to identify the PTP substrates.


Assuntos
Proteínas Tirosina Fosfatases , Transdução de Sinais , Proteínas Tirosina Fosfatases/genética , Fosforilação , Proteínas Tirosina Quinases , Tirosina
20.
bioRxiv ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39282375

RESUMO

Dual-specificity mitogen-activated protein kinase (MAPK) phosphatases (MKPs) directly dephosphorylate and inactivate the MAPKs. Although the catalytic mechanism of dephosphorylation of the MAPKs by the MKPs is established, a complete molecular picture of the regulatory interplay between the MAPKs and MKPs still remains to be fully explored. Here, we sought to define the molecular mechanism of MKP5 regulation through an allosteric site within its catalytic domain. We demonstrate using crystallographic and NMR spectroscopy approaches that residue Y435 is required to maintain the structural integrity of the allosteric pocket. Along with molecular dynamics simulations, these data provide insight into how changes in the allosteric pocket propagate conformational flexibility in the surrounding loops to reorganize catalytically crucial residues in the active site. Furthermore, Y435 contributes to the interaction with p38 MAPK and JNK, thereby promoting dephosphorylation. Collectively, these results highlight the role of Y435 in the allosteric site as a novel mode of MKP5 regulation by p38 MAPK and JNK.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA