Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(48): e2209231119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36417434

RESUMO

The shaping of bone structures relies on various cell types and signaling pathways. Here, we use the zebrafish bifurcating fin rays during regeneration to investigate bone patterning. We found that the regenerating fin rays form via two mineralization fronts that undergo an osteoblast-dependent fusion/stitching until the branchpoint, and that bifurcation is not simply the splitting of one unit into two. We identified tartrate-resistant acid phosphatase-positive osteolytic tubular structures at the branchpoints, hereafter named osteolytic tubules (OLTs). Chemical inhibition of their bone-resorbing activity strongly impairs ray bifurcation, indicating that OLTs counteract the stitching process. Furthermore, by testing different osteoactive compounds, we show that the position of the branchpoint depends on the balance between bone mineralization and resorption activities. Overall, these findings provide a unique perspective on fin ray formation and bifurcation, and reveal a key role for OLTs in defining the proximo-distal position of the branchpoint.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Osteoblastos/metabolismo , Transdução de Sinais , Osso e Ossos/metabolismo
2.
Circ Res ; 126(8): 968-984, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32070236

RESUMO

RATIONALE: The transcription factor NFATC1 (nuclear factor of activated T-cell 1) has been implicated in cardiac valve formation in humans and mice, but we know little about the underlying mechanisms. To gain mechanistic understanding of cardiac valve formation at single-cell resolution and insights into the role of NFATC1 in this process, we used the zebrafish model as it offers unique attributes for live imaging and facile genetics. OBJECTIVE: To understand the role of Nfatc1 in cardiac valve formation. METHODS AND RESULTS: Using the zebrafish atrioventricular valve, we focus on the valve interstitial cells (VICs), which confer biomechanical strength to the cardiac valve leaflets. We find that initially atrioventricular endocardial cells migrate collectively into the cardiac jelly to form a bilayered structure; subsequently, the cells that led this migration invade the ECM (extracellular matrix) between the 2 endocardial cell monolayers, undergo endothelial-to-mesenchymal transition as marked by loss of intercellular adhesion, and differentiate into VICs. These cells proliferate and are joined by a few neural crest-derived cells. VIC expansion and a switch from a promigratory to an elastic ECM drive valve leaflet elongation. Functional analysis of Nfatc1 reveals its requirement during VIC development. Zebrafish nfatc1 mutants form significantly fewer VICs due to reduced proliferation and impaired recruitment of endocardial and neural crest cells during the early stages of VIC development. With high-speed microscopy and echocardiography, we show that reduced VIC formation correlates with valvular dysfunction and severe retrograde blood flow that persist into adulthood. Analysis of downstream effectors reveals that Nfatc1 promotes the expression of twist1b-a well-known regulator of epithelial-to-mesenchymal transition. CONCLUSIONS: Our study sheds light on the function of Nfatc1 in zebrafish cardiac valve development and reveals its role in VIC formation. It also further establishes the zebrafish as a powerful model to carry out longitudinal studies of valve formation and function.


Assuntos
Valvas Cardíacas/citologia , Valvas Cardíacas/crescimento & desenvolvimento , Fatores de Transcrição NFATC/fisiologia , Organogênese/fisiologia , Animais , Animais Geneticamente Modificados , Movimento Celular/fisiologia , Feminino , Masculino , Camundongos , Distribuição Aleatória , Peixe-Zebra
3.
J Cell Sci ; 132(22)2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31636113

RESUMO

Osteoblast differentiation is a key process for bone homeostasis and repair. Multiple signalling pathways have been associated with osteoblast differentiation, yet much remains unknown on how this process is regulated in vivo Previous studies have proposed that the Hippo pathway transcriptional co-activators YAP and TAZ (also known as YAP1 and WWTR1, respectively) maintain progenitor stemness and inhibit terminal differentiation of osteoblasts, whereas others suggest they potentiate osteoblast differentiation and bone formation. Here, we use zebrafish caudal fin regeneration as a model to clarify how the Hippo pathway regulates de novo bone formation and osteoblast differentiation. We demonstrate that Yap inhibition leads to accumulation of osteoprogenitors and prevents osteoblast differentiation in a cell non-autonomous manner. This effect correlates with a severe impairment of Bmp signalling in osteoblasts, likely by suppressing the expression of the ligand bmp2a in the surrounding mesenchymal cells. Overall, our findings provide a new mechanism of bone formation through the Hippo-Yap pathway, integrating Yap in the signalling cascade that governs osteoprogenitor maintenance and subsequent differentiation during zebrafish caudal fin regeneration.


Assuntos
Nadadeiras de Animais/fisiologia , Proteínas Morfogenéticas Ósseas/genética , Osteoblastos/metabolismo , Regeneração/fisiologia , Transativadores/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Nadadeiras de Animais/metabolismo , Animais , Diferenciação Celular/fisiologia , Proliferação de Células , Osteoblastos/citologia , Osteogênese , Proteínas Serina-Treonina Quinases/metabolismo , Serina-Treonina Quinase 3 , Transdução de Sinais , Transativadores/antagonistas & inibidores , Proteínas de Sinalização YAP , Proteínas de Peixe-Zebra/antagonistas & inibidores
4.
Ecotoxicol Environ Saf ; 226: 112838, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34607190

RESUMO

Persistent and ubiquitous organic pollutants, such as the polycyclic aromatic hydrocarbon benzo[⍺]pyrene (BaP), represent a major threat to aquatic organisms and human health. Beside some well-documented adverse effects on the development and reproduction of aquatic organisms, BaP was recently shown to affect fish bone formation and skeletal development through mechanisms that remain poorly understood. In this work, zebrafish bone-related in vivo assays were used to evaluate the osteotoxic effects of BaP during bone development and regeneration. Acute exposure of zebrafish larvae to BaP from 3 to 6 days post-fertilization (dpf) induced a dose-dependent reduction of the opercular bone size and a depletion of osteocalcin-positive cells, indicating an effect on osteoblast maturation. Chronic exposure of zebrafish larvae to BaP from 3 to 30 dpf affected the development of the axial skeleton and increased the incidence and severity of skeletal deformities. In young adults, BaP affected the mineralization of newly formed fin rays and scales, and impaired fin ray patterning and scale shape, through mechanisms that involve an imbalanced bone remodeling. Gene expression analyses indicated that BaP induced the activation of xenobiotic and metabolic pathways, while negatively impacting extracellular matrix formation and organization. Interestingly, BaP exposure positively regulated inflammation markers in larvae and increased the recruitment of neutrophils. A direct interaction between neutrophils and bone extracellular matrix or bone forming cells was observed in vivo, suggesting a role for neutrophils in the mechanisms underlying BaP osteotoxicity. Our work provides novel data on the cellular and molecular players involved in BaP osteotoxicity and brings new insights into a possible role for neutrophils in inflammatory bone reduction.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Peixe-Zebra , Animais , Benzo(a)pireno/toxicidade , Humanos , Larva , Pirenos
5.
BMC Dev Biol ; 14: 49, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25551555

RESUMO

BACKGROUND: Zebrafish are able to regenerate many of its tissues and organs after damage. In amphibians this process is regulated by nerve fibres present at the site of injury, which have been proposed to release factors into the amputated limbs/fins, promoting and sustaining the proliferation of blastemal cells. Although some candidate factors have been proposed to mediate the nerve dependency of regeneration, the molecular mechanisms involved in this process remain unclear. RESULTS: We have used zebrafish as a model system to address the role of nerve fibres in fin regeneration. We have developed a protocol for pectoral fin denervation followed by amputation and analysed the regenerative process under this experimental conditions. Upon denervation fins were able to close the wound and form a wound epidermis, but could not establish a functional apical epithelial cap, with a posterior failure of blastema formation and outgrowth, and the accumulation of several defects. The expression patterns of genes known to be key players during fin regeneration were altered upon denervation, suggesting that nerves can contribute to the regulation of the Fgf, Wnt and Shh pathways during zebrafish fin regeneration. CONCLUSIONS: Our results demonstrate that proper innervation of the zebrafish pectoral fin is essential for a successful regenerative process, and establish this organism as a useful model to understand the molecular and cellular mechanisms of nerve dependence, during vertebrate regeneration.


Assuntos
Nadadeiras de Animais/fisiologia , Regeneração , Nadadeiras de Animais/inervação , Animais , Proliferação de Células , Denervação , Feminino , Expressão Gênica , Mesoderma/citologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
Development ; 138(18): 3897-905, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21862555

RESUMO

The origin of cells that generate the blastema following appendage amputation has been a long-standing question in epimorphic regeneration studies. The blastema is thought to originate from either stem (or progenitor) cells or differentiated cells of various tissues that undergo dedifferentiation. Here, we investigate the origin of cells that contribute to the regeneration of zebrafish caudal fin skeletal elements. We provide evidence that the process of lepidotrichia (bony rays) regeneration is initiated as early as 24 hours post-amputation and that differentiated scleroblasts acquire a proliferative state, detach from the lepidotrichia surface, migrate distally, integrate into the blastema and dedifferentiate. These findings provide novel insights into the origin of cells in epimorphic appendage regeneration in zebrafish and suggest conservation of regeneration mechanisms between fish and amphibians.


Assuntos
Nadadeiras de Animais/fisiologia , Osso e Ossos/fisiologia , Regeneração/fisiologia , Peixe-Zebra/fisiologia , Nadadeiras de Animais/metabolismo , Animais , Animais Geneticamente Modificados , Desenvolvimento Ósseo/genética , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Desdiferenciação Celular/genética , Desdiferenciação Celular/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células , Expressão Gênica , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Osteogênese/genética , Regeneração/genética , Cicatrização/genética , Cicatrização/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
7.
Cell Mol Life Sci ; 69(3): 423-34, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21739231

RESUMO

Four-and-a-half LIM domains protein 2 (FHL2) is involved in major cellular mechanisms such as regulation of gene transcription and cytoskeleton modulation, participating in physiological control of cardiogenesis and osteogenesis. Knowledge on underlying mechanisms is, however, limited. We present here new data on FHL2 protein and its role during vertebrate development using a marine teleost fish, the gilthead seabream (Sparus aurata L.). In silico comparison of vertebrate protein sequences and prediction of LIM domain three-dimensional structure revealed a high degree of conservation, suggesting a conserved function throughout evolution. Determination of sites and levels of FHL2 gene expression in seabream indicated a central role for FHL2 in the development of heart and craniofacial musculature, and a potential role in tissue calcification. Our data confirmed the key role of FHL2 protein during vertebrate development and gave new insights into its particular involvement in craniofacial muscle development and specificity for slow fibers.


Assuntos
Proteínas com Domínio LIM/metabolismo , Desenvolvimento Muscular/genética , Dourada/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Evolução Molecular , Regulação da Expressão Gênica , Proteínas com Domínio LIM/química , Proteínas com Domínio LIM/fisiologia , Dados de Sequência Molecular , Estrutura Terciária de Proteína
8.
BMC Dev Biol ; 12: 28, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-23043290

RESUMO

BACKGROUND: In chondrichthyans, basal osteichthyans and tetrapods, vertebral bodies have cartilaginous anlagen that subsequently mineralize (chondrichthyans) or ossify (osteichthyans). Chondrocytes that form the vertebral centra derive from somites. In teleost fish, vertebral centrum formation starts in the absence of cartilage, through direct mineralization of the notochord sheath. In a second step, the notochord is surrounded by somite-derived intramembranous bone. In several small teleost species, including zebrafish (Danio rerio), even haemal and neural arches form directly as intramembranous bone and only modified caudalmost arches remain cartilaginous. This study compares initial patterns of mineralization in different regions of the vertebral column in zebrafish. We ask if the absence or presence of cartilaginous arches influences the pattern of notochord sheath mineralization. RESULTS: To reveal which cells are involved in mineralization of the notochord sheath we identify proliferating cells, we trace mineralization on the histological level and we analyze cell ultrastructure by TEM. Moreover, we localize proteins and genes that are typically expressed by skeletogenic cells such as Collagen type II, Alkaline phosphatase (ALP) and Osteocalcin (Oc). Mineralization of abdominal and caudal vertebrae starts with a complete ring within the notochord sheath and prior to the formation of the bony arches. In contrast, notochord mineralization of caudal fin centra starts with a broad ventral mineral deposition, associated with the bases of the modified cartilaginous arches. Similar, arch-related, patterns of mineralization occur in teleosts that maintain cartilaginous arches throughout the spine.Throughout the entire vertebral column, we were able to co-localize ALP-positive signal with chordacentrum mineralization sites, as well as Collagen II and Oc protein accumulation in the mineralizing notochord sheath. In the caudal fin region, ALP and Oc signals were clearly produced both by the notochord epithelium and cells outside the notochord, the cartilaginous arches. Based on immunostaining, real time PCR and oc2:gfp transgenic fish, we identify Oc in the mineralizing notochord sheath as osteocalcin isoform 1 (Oc1). CONCLUSIONS: If notochord mineralization occurs prior to arch formation, mineralization of the notochord sheath is ring-shaped. If notochord mineralization occurs after cartilaginous arch formation, mineralization of the notochord sheath starts at the insertion point of the arches, with a basiventral origin. The presence of ALP and Oc1, not only in cells outside the notochord, but also in the notochord epithelium, suggests an active role of the notochord in the mineralization process. The same may apply to Col II-positive chondrocytes of the caudalmost haemal arches that show ALP activity and Oc1 accumulation, since these chondrocytes do not mineralize their own cartilage matrix. Even without cartilaginous preformed vertebral centra, the cartilaginous arches may have an inductive role in vertebral centrum formation, possibly contributing to the distinct mineralization patterns of zebrafish vertebral column and caudal fin vertebral fusion.


Assuntos
Calcificação Fisiológica , Notocorda/embriologia , Osteocalcina/metabolismo , Coluna Vertebral/embriologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Colágeno Tipo II/metabolismo , Notocorda/citologia , Notocorda/metabolismo , Isoformas de Proteínas/metabolismo , Transporte Proteico , Coluna Vertebral/citologia , Coluna Vertebral/metabolismo , Peixe-Zebra/metabolismo
9.
Evol Dev ; 14(1): 116-27, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23016979

RESUMO

The vertebral column results from a controlled segmentation process associated with two main structures, the notochord and the somites. Pathological fusion of vertebral bodies can result from impaired segmentation during embryonic development or occur postnatally. Here, we explore the process of formation and subsequent fusion of the caudalmost vertebral bodies in zebrafish, where fusion is a normal process, mechanically required to support the caudal fin. To reveal whether the product of fusion is on an evolutionary or a developmental scale, we analyze the mode of formation of vertebral bodies, identify transitory rudiments, and characterize vestiges that indicate previous fusion events. Based on a series of closely spaced ontogenetic stages of cleared and stained zebrafish, parasagittal sections, and detection methods for elastin and mineral, we conclude that the formation of the urostyle involves four fusion events. Although fusion of preural 1 (PU1(+) ) with ural 1 (U1) and fusion within ural 2 (U2(+) ) are no longer traceable during centrum formation (phylogenetic fusion), fusion between the compound centrum [PU1(+) +U1] and U2(+) (ontogenetic fusion) occurs after individualization of the centra. This slow process is the last fusion and perhaps the latest fusion during the evolution of the zebrafish caudal fin endoskeleton. Newly described characters, such as a mineralized subdivision within U2(+) , together with the reinterpretation of known features in an evolutionary-developmental context, strongly suggest that the zebrafish caudal fin endoskeleton is made from more fused vertebral bodies than previously assumed. In addition, these fusion events occur at different developmental levels depending on their evolutionary status, allowing the dissection of fusion processes that have taken place over different evolutionary times.


Assuntos
Nadadeiras de Animais/crescimento & desenvolvimento , Evolução Biológica , Peixe-Zebra/crescimento & desenvolvimento , Nadadeiras de Animais/anatomia & histologia , Animais , Peixe-Zebra/anatomia & histologia
10.
Elife ; 112022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35993337

RESUMO

Regeneration depends on the ability of mature cells at the injury site to respond to injury, generating tissue-specific progenitors that incorporate the blastema and proliferate to reconstitute the original organ architecture. The metabolic microenvironment has been tightly connected to cell function and identity during development and tumorigenesis. Yet, the link between metabolism and cell identity at the mechanistic level in a regenerative context remains unclear. The adult zebrafish caudal fin, and bone cells specifically, have been crucial for the understanding of mature cell contribution to tissue regeneration. Here, we use this model to explore the relevance of glucose metabolism for the cell fate transitions preceding new osteoblast formation and blastema assembly. We show that injury triggers a modulation in the metabolic profile at early stages of regeneration to enhance glycolysis at the expense of mitochondrial oxidation. This metabolic adaptation mediates transcriptional changes that make mature osteoblast amenable to be reprogramed into pre-osteoblasts and induces cell cycle re-entry and progression. Manipulation of the metabolic profile led to severe reduction of the pre-osteoblast pool, diminishing their capacity to generate new osteoblasts, and to a complete abrogation of blastema formation. Overall, our data indicate that metabolic alterations have a powerful instructive role in regulating genetic programs that dictate fate decisions and stimulate proliferation, thereby providing a deeper understanding on the mechanisms regulating blastema formation and bone regeneration.


Assuntos
Nadadeiras de Animais , Peixe-Zebra , Nadadeiras de Animais/metabolismo , Animais , Regeneração Óssea , Divisão Celular , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
11.
Chemosphere ; 303(Pt 3): 135198, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35660050

RESUMO

The presence of microplastics in the aquatic ecosystem represents a major issue for the environment and human health. The capacity of organic pollutants to adsorb onto microplastic particles raises additional concerns, as it creates a new route for toxic compounds to enter the food web. Current knowledge on the impact of pristine and/or contaminated microplastics on aquatic organisms remains insufficient, and we provide here new insights by evaluating their biological effects in zebrafish (Danio rerio). Zebrafish larvae were raised in ZEB316 stand-alone housing systems and chronically exposed throughout their development to polyethylene particles of 20-27 µm, pristine (MP) or spiked with benzo[α]pyrene (MP-BaP), supplemented at 1% w/w in the fish diet. While they had no effect at 30 days post-fertilization (dpf), MP and MP-BaP affected growth parameters at 90 and 360 dpf. Relative fecundity, egg morphology, and yolk area were also impaired in zebrafish fed MP-BaP. Zebrafish exposed to experimental diets exhibited an increased incidence of skeletal deformities at 30 dpf as well as an impaired development of caudal fin/scales, and a decreased bone quality at 90 dpf. An intergenerational bone formation impairment was also observed in the offspring of parents exposed to MP or MP-BaP through a reduction of the opercular bone in 6 dpf larvae. Beside a clear effect on bone development, histological analysis of the gut revealed a reduced number of goblet cells in zebrafish fed MP-BaP diet, a sign of intestinal inflammation. Finally, exposure of larvae to MP-BaP up-regulated the expression of genes associated with the BaP response pathway, while negatively impacting the expression of genes involved in oxidative stress. Altogether, these data suggest that long-term exposure to pristine/contaminated microplastics not only jeopardizes fish growth, reproduction performance, and skeletal health, but also causes intergenerational effects.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Benzo(a)pireno/análise , Ecossistema , Larva , Microplásticos/toxicidade , Plásticos/metabolismo , Polietileno/metabolismo , Poluentes Químicos da Água/análise , Peixe-Zebra/metabolismo
12.
Cardiovasc Res ; 118(12): 2665-2687, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34609500

RESUMO

AIMS: Mammalian models have been instrumental in investigating adult heart function and human disease. However, electrophysiological differences with human hearts and high costs motivate the need for non-mammalian models. The zebrafish is a well-established genetic model to study cardiovascular development and function; however, analysis of cardiovascular phenotypes in adult specimens is particularly challenging as they are opaque. METHODS AND RESULTS: Here, we optimized and combined multiple imaging techniques including echocardiography, magnetic resonance imaging, and micro-computed tomography to identify and analyse cardiovascular phenotypes in adult zebrafish. Using alk5a/tgfbr1a mutants as a case study, we observed morphological and functional cardiovascular defects that were undetected with conventional approaches. Correlation analysis of multiple parameters revealed an association between haemodynamic defects and structural alterations of the heart, as observed clinically. CONCLUSION: We report a new, comprehensive, and sensitive platform to identify otherwise indiscernible cardiovascular phenotypes in adult zebrafish.


Assuntos
Sistema Cardiovascular , Peixe-Zebra , Animais , Ecocardiografia , Coração , Humanos , Mamíferos , Microtomografia por Raio-X , Peixe-Zebra/genética
13.
Elife ; 102021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34152269

RESUMO

The transcription factor Snai1, a well-known regulator of epithelial-to-mesenchymal transition, has been implicated in early cardiac morphogenesis as well as in cardiac valve formation. However, a role for Snai1 in regulating other aspects of cardiac morphogenesis has not been reported. Using genetic, transcriptomic, and chimeric analyses in zebrafish, we find that Snai1b is required in cardiomyocytes for myocardial wall integrity. Loss of snai1b increases the frequency of cardiomyocyte extrusion away from the cardiac lumen. Extruding cardiomyocytes exhibit increased actomyosin contractility basally as revealed by enrichment of p-myosin and α-catenin epitope α-18, as well as disrupted intercellular junctions. Transcriptomic analysis of wild-type and snai1b mutant hearts revealed the dysregulation of intermediate filament genes, including desmin b (desmb) upregulation. Cardiomyocyte-specific desmb overexpression caused increased cardiomyocyte extrusion, recapitulating the snai1b mutant phenotype. Altogether, these results indicate that Snai1 maintains the integrity of the myocardial epithelium, at least in part by repressing desmb expression.


Assuntos
Regulação da Expressão Gênica , Coração/fisiologia , Filamentos Intermediários/genética , Fatores de Transcrição da Família Snail/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Animais , Miocárdio/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
14.
Elife ; 92020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32990594

RESUMO

The development of the cardiac outflow tract (OFT), which connects the heart to the great arteries, relies on a complex crosstalk between endothelial (ECs) and smooth muscle (SMCs) cells. Defects in OFT development can lead to severe malformations, including aortic aneurysms, which are frequently associated with impaired TGF-ß signaling. To better understand the role of TGF-ß signaling in OFT formation, we generated zebrafish lacking the TGF-ß receptor Alk5 and found a strikingly specific dilation of the OFT: alk5-/- OFTs exhibit increased EC numbers as well as extracellular matrix (ECM) and SMC disorganization. Surprisingly, endothelial-specific alk5 overexpression in alk5-/- rescues the EC, ECM, and SMC defects. Transcriptomic analyses reveal downregulation of the ECM gene fibulin-5, which when overexpressed in ECs ameliorates OFT morphology and function. These findings reveal a new requirement for endothelial TGF-ß signaling in OFT morphogenesis and suggest an important role for the endothelium in the etiology of aortic malformations.


Assuntos
Endotélio Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Aorta/citologia , Aorta/metabolismo , Endotélio Vascular/citologia , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Proteína Smad3/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
15.
Dev Cell ; 52(1): 9-20.e7, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31786069

RESUMO

Cardiac valve disease can lead to severe cardiac dysfunction and is thus a frequent cause of morbidity and mortality. Its main treatment is valve replacement, which is currently greatly limited by the poor recellularization and tissue formation potential of the implanted valves. As we still lack suitable animal models to identify modulators of these processes, here we used adult zebrafish and found that, upon valve decellularization, they initiate a rapid regenerative program that leads to the formation of new functional valves. After injury, endothelial and kidney marrow-derived cells undergo cell cycle re-entry and differentiate into new extracellular matrix-secreting valve cells. The TGF-ß signaling pathway promotes the regenerative process by enhancing progenitor cell proliferation as well as valve cell differentiation. These findings reveal a key role for TGF-ß signaling in cardiac valve regeneration and establish the zebrafish as a model to identify and test factors promoting cardiac valve recellularization and growth.


Assuntos
Diferenciação Celular , Endotélio/citologia , Valvas Cardíacas/citologia , Rim/citologia , Regeneração , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Animais , Ciclo Celular , Endotélio/metabolismo , Matriz Extracelular/metabolismo , Valvas Cardíacas/metabolismo , Rim/metabolismo , Modelos Animais , Engenharia Tecidual/métodos , Peixe-Zebra/metabolismo
16.
Elife ; 72018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30592462

RESUMO

Complex interplay between cardiac tissues is crucial for their integrity. The flow responsive transcription factor KLF2, which is expressed in the endocardium, is vital for cardiovascular development but its exact role remains to be defined. To this end, we mutated both klf2 paralogues in zebrafish, and while single mutants exhibit no obvious phenotype, double mutants display a novel phenotype of cardiomyocyte extrusion towards the abluminal side. This extrusion requires cardiac contractility and correlates with the mislocalization of N-cadherin from the lateral to the apical side of cardiomyocytes. Transgenic rescue data show that klf2 expression in endothelium, but not myocardium, prevents this cardiomyocyte extrusion phenotype. Transcriptome analysis of klf2 mutant hearts reveals that Fgf signaling is affected, and accordingly, we find that inhibition of Fgf signaling in wild-type animals can lead to abluminal cardiomyocyte extrusion. These studies provide new insights into how Klf2 regulates cardiovascular development and specifically myocardial wall integrity.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Miocárdio/metabolismo , Transdução de Sinais , Proteínas de Peixe-Zebra/metabolismo , Alelos , Animais , Sequência de Bases , Caderinas/metabolismo , Morte Celular , Polaridade Celular , Proliferação de Células , Regulação para Baixo , Embrião não Mamífero/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Ligantes , Mutação/genética , Contração Miocárdica , Miocárdio/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Fenótipo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Tretinoína/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
17.
Dev Neurobiol ; 75(1): 80-92, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25044975

RESUMO

The development of organs composed by repeated functional units is, in many cases, accomplished by the transition of cells from a progenitor to a differentiation domain, triggering a reiterated developmental program. Yet, how these discrete fields are formed during development is still a largely unresolved question. The posterior lateral line (pLL), a sensory organ present in fish and amphibians, develops from a primordium that migrates along the flanks of the animal periodically depositing neuromasts, the pLL functional units. In zebrafish (Danio rerio), the developmental program of the pLL is triggered by the transit of progenitor cells from a Wnt to a Fgf signaling domain. It has been proposed that these two fields are defined by the antagonistic activity of these two signaling pathways, but how they are formed and maintained is still an open question in the development of the pLL. In this work, we show that sox21a, an HMG -box transcription factor, is expressed within the Fgf domain. We demonstrate that, while the Fgf signaling pathway do not control sox21a, knockdown of sox21a causes impairment of Fgf signaling, expansion of the Wnt signaling domain and disruption of neuromast development. These results suggest that sox21a is a key player in the pLL primordium patterning, fine-tuning the border of the Fgf and Wnt signaling domains.


Assuntos
Padronização Corporal/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Sistema da Linha Lateral/embriologia , Fatores de Transcrição SOXB2/fisiologia , Transdução de Sinais/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Embrião não Mamífero , Via de Sinalização Wnt/fisiologia , Peixe-Zebra , Proteínas de Peixe-Zebra/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA