Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473989

RESUMO

The vacuolar proton-translocating ATPase (V-ATPase) is a transmembrane multi-protein complex fundamental in maintaining a normal intracellular pH. In the tumoral contest, its role is crucial since the metabolism underlying carcinogenesis is mainly based on anaerobic glycolytic reactions. Moreover, neoplastic cells use the V-ATPase to extrude chemotherapy drugs into the extra-cellular compartment as a drug resistance mechanism. In glioblastoma (GBM), the most malignant and incurable primary brain tumor, the expression of this pump is upregulated, making it a new possible therapeutic target. In this work, the bafilomycin A1-induced inhibition of V-ATPase in patient-derived glioma stem cell (GSC) lines was evaluated together with temozolomide, the first-line therapy against GBM. In contrast with previous published data, the proposed treatment did not overcome resistance to the standard therapy. In addition, our data showed that nanomolar dosages of bafilomycin A1 led to the blockage of the autophagy process and cellular necrosis, making the drug unusable in models which are more complex. Nevertheless, the increased expression of V-ATPase following bafilomycin A1 suggests a critical role of the proton pump in GBM stem components, encouraging the search for novel strategies to limit its activity in order to circumvent resistance to conventional therapy.


Assuntos
Glioblastoma , Glioma , Macrolídeos , ATPases Vacuolares Próton-Translocadoras , Humanos , ATPases Vacuolares Próton-Translocadoras/metabolismo , Glioma/patologia , Glioblastoma/patologia , Resistência a Medicamentos , Fenótipo , Células-Tronco Neoplásicas/metabolismo
2.
J Neurosci Res ; 101(2): 199-216, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36300592

RESUMO

Glioblastoma (GBM) is the most aggressive and invasive primary brain tumor. Current therapies are not curative, and patients' outcomes remain poor with an overall survival of 20.9 months after surgery. The typical growing pattern of GBM develops by infiltrating the surrounding apparent normal brain tissue within which the recurrence is expected to appear in the majority of cases. Thus, in the last decades, an increased interest has developed to investigate the cellular and molecular interactions between GBM and the peritumoral brain zone (PBZ) bordering the tumor tissue. The aim of this review is to provide up-to-date knowledge about the oncogenic properties of the PBZ to highlight possible druggable targets for more effective treatment of GBM by limiting the formation of recurrence, which is almost inevitable in the majority of patients. Starting from the description of the cellular components, passing through the illustration of the molecular profiles, we finally focused on more clinical aspects, represented by imaging and radiological details. The complete picture that emerges from this review could provide new input for future investigations aimed at identifying new effective strategies to eradicate this still incurable tumor.


Assuntos
Encéfalo , Neoplasias , Humanos
3.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511212

RESUMO

The lack of effective screening and successful treatment contributes to high ovarian cancer mortality, making it the second most common cause of gynecologic cancer death. Development of chemoresistance in up to 75% of patients is the cause of a poor treatment response and reduced survival. Therefore, identifying potential and effective biomarkers for its diagnosis and prognosis is a strong critical need. Copy number alterations are frequent in cancer, and relevant for molecular tumor stratification and patients' prognoses. In this study, array-CGH analysis was performed in three cell lines and derived cancer stem cells (CSCs) to identify genes potentially predictive for ovarian cancer patients' prognoses. Bioinformatic analyses of genes involved in copy number gains revealed that AhRR and PPP1R3C expression negatively correlated with ovarian cancer patients' overall and progression-free survival. These results, together with a significant association between AhRR and PPP1R3C expression and ovarian cancer stemness markers, suggested their potential role in CSCs. Furthermore, AhRR and PPP1R3C's increased expression was maintained in some CSC subpopulations, reinforcing their potential role in ovarian cancer. In conclusion, we reported for the first time, to the best of our knowledge, a prognostic role of AhRR and PPP1R3C expression in serous ovarian cancer.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Feminino , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Epitelial do Ovário/patologia , Cistadenocarcinoma Seroso/diagnóstico , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Variações do Número de Cópias de DNA/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Prognóstico
4.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769158

RESUMO

Despite the efforts made in recent decades, glioblastoma is still the deadliest primary brain cancer without cure. The potential role in tumour maintenance and progression of the peritumoural brain zone (PBZ), the apparently normal area surrounding the tumour, has emerged. Little is known about this area due to a lack of common definition and due to difficult sampling related to the functional role of peritumoural healthy brain. The aim of this work was to better characterize the PBZ and to identify genes that may have role in its malignant transformation. Starting from our previous study on the comparison of the genomic profiles of matched tumour core and PBZ biopsies, we selected CDK4 and EXT2 as putative malignant drivers of PBZ. The gene expression analysis confirmed their over-expression in PBZ, similarly to what happens in low-grade glioma and glioblastoma, and CDK4 high levels seem to negatively influence patient overall survival. The prognostic role of CDK4 and EXT2 was further confirmed by analysing the TCGA cohort and bioinformatics prediction on their gene networks and protein-protein interactions. These preliminary data constitute a good premise for future investigations on the possible role of CDK4 and EXT2 in the malignant transformation of PBZ.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/metabolismo , Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Glioma/metabolismo , Perfilação da Expressão Gênica , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo
5.
World J Urol ; 40(9): 2267-2273, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35841413

RESUMO

PURPOSE: Bladder cancer is the most common malignancy of the urinary tract and one of the most prevalent cancers worldwide. It represents a spectrum of diseases, from recurrent non-invasive tumors (NMIBCs) managed chronically, to muscle infiltrating and advanced-stage disease (MIBC) that requires multimodal and invasive treatment. Multiple studies have underlined the complexity of bladder tumors genome, highlighting many specific genetic lesions and genome-wide occurrences of copy-number alterations (CNAs). In this study, we analyzed CNAs of selected genes in our cohorts of cancer stem cells (CSCs) and in The Cancer Genome Atlas (TCGA-BLCA) cohort with the aim to correlate their frequency with patients' prognosis. METHODS: CNAs have been verified on our array-CGH data previously reported on 19 bladder cancer biopsies (10 NMIBCs and 9 MIBCs) and 16 matched isolated CSC cultures. In addition, CNAs data have been consulted on the TCGA database, to search correlations with patients' follow-up. Finally, mRNA expression levels of LRP1B in TGCA cohort were obtained from The Human Protein Atlas. RESULTS: We firstly identified CNAs differentially represented between TGCA data and CSCs derived from NMIBCs and MIBCs, and we correlated the presence of these CNAs with patients' follow-up. LRP1B loss was significantly increased in CSCs and linked to short-term poor prognosis, both at genomic and transcriptomic level, confirming its pivotal role in bladder cancer tumorigenesis. CONCLUSION: Our study allowed us to identify potential "predictive" prognostic CNAs for bladder cancer, implementing knowledge for the ultimate goal of personalized medicine.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias da Bexiga Urinária , Variações do Número de Cópias de DNA/genética , Humanos , Recidiva Local de Neoplasia , Células-Tronco Neoplásicas , Prognóstico , Receptores de LDL/genética , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
6.
Int J Mol Sci ; 23(6)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35328767

RESUMO

Improvements in microarray-based comparative genomic hybridization technology have allowed for high-resolution detection of genome wide copy number alterations, leading to a better definition of rearrangements and supporting the study of pathogenesis mechanisms. In this study, we focused our attention on chromosome 8p. We report 12 cases of 8p rearrangements, analyzed by molecular karyotype, evidencing a continuum of fragility that involves the entire short arm. The breakpoints seem more concentrated in three intervals: one at the telomeric end, the others at 8p23.1, close to the beta-defensin gene cluster and olfactory receptor low-copy repeats. Hypothetical mechanisms for all cases are described. Our data extend the cohort of published patients with 8p aberrations and highlight the need to pay special attention to these sequences due to the risk of formation of new chromosomal aberrations with pathological effects.


Assuntos
Aberrações Cromossômicas , Genoma , Hibridização Genômica Comparativa , Rearranjo Gênico , Humanos , Hibridização in Situ Fluorescente
7.
Cell Mol Biol (Noisy-le-grand) ; 67(2): 33-43, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34817376

RESUMO

Notch signaling is an evolutionary conserved pathway that plays a central role in development and differentiation of eukaryotic cells. It has been well documented that Notch signaling is inevitable for neuronal cell growth and homeostasis. It regulates process of differentiation from early embryonic stages to fully developed brain. To achieve this streamlined development of neuronal cells, a number of cellular processes are being orchestrated by the Notch signaling. Abrogated Notch signaling is related to several brain tumors, including glioblastomas. On the other hand, microRNAs are small molecules that play decisive role in mediating and modulating Notch signaling. This review discusses the crucial role of Notch signaling in development of nervous system and how this versatile pathway interplay with microRNAs in glioblastoma. This review sheds light on interplay between abrogated Notch signaling and miRNAs in the regulation of neuronal differentiation with special focus on miRNAs mediated regulation of tumorigenesis in glioblastoma. Furthermore, it discusses different aspects of neurogenesis modulated by the Notch signaling that could be exploited for the identification of new diagnostic tools and therapies for the treatment of glioblastoma.


Assuntos
Neoplasias Encefálicas/genética , Glioblastoma/genética , MicroRNAs/genética , Neurogênese/genética , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Diferenciação Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos
8.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073228

RESUMO

The presence of thousands of repetitive sequences makes the centromere a fragile region subject to breakage. In this study we collected 31 cases of rearrangements of chromosome 18, of which 16 involved an acrocentric chromosome, during genetic screening done in three centers. We noticed a significant enrichment of reciprocal translocations between the centromere of chromosome 18 and the centromeric or pericentromeric regions of the acrocentrics. We describe five cases with translocation between chromosome 18 and an acrocentric chromosome, and one case involving the common telomere regions of chromosomes 18p and 22p. In addition, we bring evidence to support the hypothesis that chromosome 18 preferentially recombines with acrocentrics: (i) the presence on 18p11.21 of segmental duplications highly homologous to acrocentrics, that can justify a NAHR mechanism; (ii) the observation by 2D-FISH of the behavior of the centromeric regions of 18 respect to the centromeric regions of acrocentrics in the nuclei of normal subjects; (iii) the contact analysis among these regions on published Hi-C data from the human lymphoblastoid cell line (GM12878).


Assuntos
Cromossomos Humanos Par 18/genética , Translocação Genética , Adulto , Linhagem Celular Tumoral , Feminino , Humanos , Lactente , Masculino , Gravidez
9.
Int J Mol Sci ; 22(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557274

RESUMO

Uterine smooth muscle tumors of uncertain malignant potential (STUMPs) represent a heterogeneous group of tumors that cannot be histologically diagnosed as unequivocally benign or malignant. For this reason, many authors are working to obtain a better definition of diagnostic and prognostic criteria. In this work, we analyzed the genomic and epigenomic profile of uterine smooth muscle tumors (USMTs) in order to find similarities and differences between STUMPs, leiomyosarcomas (LMSs) and leiomyomas (LMs), and possibly identify prognostic factors in this group of tumors. Array-CGH data on 23 USMTs demonstrated the presence of a more similar genomic profile between STUMPs and LMSs. Some genes, such as PRKDC and PUM2, with a potential prognostic value, were never previously associated with STUMP. The methylation data appears to be very promising, especially with regards to the divergent profile found in the sample that relapsed, characterized by an overall CGI hypomethylation. Finally, the Gene Ontology analysis highlighted some cancer genes that could play a pivotal role in the unexpected aggressive behavior that can be found in some of these tumors. These genes could prove to be prognostic markers in the future.


Assuntos
Biomarcadores Tumorais/genética , Epigenômica , Regulação Neoplásica da Expressão Gênica , Leiomioma/patologia , Leiomiossarcoma/patologia , Tumor de Músculo Liso/patologia , Neoplasias Uterinas/patologia , Adulto , Idoso , Estudos de Casos e Controles , Metilação de DNA , Feminino , Seguimentos , Genômica , Humanos , Leiomioma/genética , Leiomiossarcoma/genética , Masculino , Pessoa de Meia-Idade , Prognóstico , Tumor de Músculo Liso/genética , Neoplasias Uterinas/genética
10.
Cytogenet Genome Res ; 160(2): 80-84, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32018271

RESUMO

Unbalanced X;autosome translocations are a rare occurrence with a wide variability in clinical presentation in which the X chromosome unbalance is usually mitigated by a favorable X inactivation pattern. In most cases, this compensation mechanism is incomplete, and the patients show a syndromic clinical presentation. We report the case of a family with 4 women, of 3 different generations, carrying an unbalanced X;7 translocation with a derivative X;7 chromosome and showing a skewed X inactivation pattern with a preferential activation of the normal X. None of the carriers show intellectual disability, and all of them have a very mild clinical presentation mainly characterized by gynecological/hormonal issues and autoimmune disorders. We underline the necessity of family testing for a correct genetic consultation, especially in the field of prenatal diagnosis. We indeed discuss the fact that X;autosome translocations may lead to self-immunization, as skewed X chromosome inactivation has already been proved to be related to autoimmune disorders.


Assuntos
Doenças Autoimunes/genética , Transtornos Cromossômicos/genética , Cromossomos Humanos X/genética , Translocação Genética , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Linhagem , Fenótipo , Gravidez , Inativação do Cromossomo X
11.
Int J Mol Sci ; 21(10)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32413994

RESUMO

Satellited non-acrocentric autosomal chromosomes (ps-qs-chromosomes) are the result of an interchange between sub- or telomeric regions of autosomes and the p arm of acrocentrics. The sequence homology at the rearrangement breakpoints appears to be, among others, the most frequent mechanism generating these variant chromosomes. The unbalanced carriers of this type of translocation may or may not display phenotypic abnormalities. With the aim to understand the causative mechanism, we revised all the ps-qs-chromosomes identified in five medical genetics laboratories, which used the same procedures for karyotype analysis, reporting 24 unrelated cases involving eight chromosomes. In conclusion, we observed three different scenarios: true translocation, benign variant and complex rearrangement. The detection of translocation partners is essential to evaluate possible euchromatic unbalances and to infer their effect on phenotype. Moreover, we emphasize the importance to perform both, molecular and conventional cytogenetics methods, to better understand the behavior of our genome.


Assuntos
Aberrações Cromossômicas , Cromossomos/genética , DNA Satélite/genética , Translocação Genética , Análise Citogenética , Humanos , Hibridização in Situ Fluorescente , Cariotipagem
12.
Int J Mol Sci ; 20(5)2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30836598

RESUMO

Chromosome 16 is one of the most gene-rich chromosomes of our genome, and 10% of its sequence consists of segmental duplications, which give instability and predisposition to rearrangement by the recurrent mechanism of non-allelic homologous recombination. Microarray technologies have allowed for the analysis of copy number variations (CNVs) that can contribute to the risk of developing complex diseases. By array comparative genomic hybridization (CGH) screening of 1476 patients, we detected 27 cases with CNVs on chromosome 16. We identified four smallest regions of overlapping (SROs): one at 16p13.11 was found in seven patients; one at 16p12.2 was found in four patients; two close SROs at 16p11.2 were found in twelve patients; finally, six patients were found with atypical rearrangements. Although phenotypic variability was observed, we identified a male bias for Childhood Apraxia of Speech associated to 16p11.2 microdeletions. We also reported an elevated frequency of second-site genomic alterations, supporting the model of the second hit to explain the clinical variability associated with CNV syndromes. Our goal was to contribute to the building of a chromosome 16 disease-map based on disease susceptibility regions. The role of the CNVs of chromosome 16 was increasingly made clear in the determination of developmental delay. We also found that in some cases a second-site CNV could explain the phenotypic heterogeneity by a simple additive effect or a pejorative synergistic effect.


Assuntos
Anormalidades Múltiplas/genética , Cromossomos Humanos Par 16/genética , Hibridização Genômica Comparativa , Deficiências do Desenvolvimento/genética , Anormalidades Múltiplas/classificação , Anormalidades Múltiplas/fisiopatologia , Adolescente , Adulto , Criança , Pré-Escolar , Aberrações Cromossômicas , Deleção Cromossômica , Variações do Número de Cópias de DNA/genética , Deficiências do Desenvolvimento/classificação , Deficiências do Desenvolvimento/fisiopatologia , Feminino , Recombinação Homóloga/genética , Humanos , Lactente , Recém-Nascido , Cariótipo , Masculino , Fenótipo , Duplicações Segmentares Genômicas/genética , Adulto Jovem
13.
Mol Cell Neurosci ; 82: 46-57, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28476540

RESUMO

DNA methylation (DNAm) changes are of increasing relevance to neurodegenerative disorders, including Huntington's disease (HD). We performed genome-wide screening of possible DNAm changes occurring during striatal differentiation in human induced pluripotent stem cells derived from a HD patient (HD-hiPSCs) as cellular model. We identified 240 differentially methylated regions (DMRs) at promoters in fully differentiated HD-hiPSCs. Subsequently, we focused on the methylation differences in a subcluster of genes related to Jumonji Domain Containing 3 (JMJD3), a demethylase that epigenetically regulates neuronal differentiation and activates neuronal progenitor associated genes, which are indispensable for neuronal fate acquisition. Noticeably among these genes, WD repeat-containing protein 5 (WDR5) promoter was found hypermethylated in HD-hiPSCs, resulting in a significant down-modulation in its expression and of the encoded protein. A similar WDR5 expression decrease was seen in a small series of HD-hiPSC lines characterized by different CAG length. The decrease in WDR5 expression was particularly evident in HD-hiPSCs compared to hESCs and control-hiPSCs from healthy subjects. WDR5 is a core component of the MLL/SET1 chromatin remodeling complexes essential for H3K4me3, previously reported to play an important role in stem cells self-renewal and differentiation. These results suggest the existence of epigenetic mechanisms in HD and the identification of genes, which are able to modulate HD phenotype, is important both for biomarker discovery and therapeutic interventions.


Assuntos
Diferenciação Celular/genética , Epigênese Genética/genética , Histona-Lisina N-Metiltransferase/genética , Doença de Huntington/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Linhagem Celular , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Humanos , Doença de Huntington/genética , Peptídeos e Proteínas de Sinalização Intracelular , Neurônios/metabolismo
15.
Int J Mol Sci ; 17(3): 271, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26927059

RESUMO

Bladder cancer represents the ninth most widespread malignancy throughout the world. It is characterized by the presence of two different clinical and prognostic subtypes: non-muscle-invasive bladder cancers (NMIBCs) and muscle-invasive bladder cancers (MIBCs). MIBCs have a poor outcome with a common progression to metastasis. Despite improvements in knowledge, treatment has not advanced significantly in recent years, with the absence of new therapeutic targets. Because of the limitations of current therapeutic options, the greater challenge will be to identify biomarkers for clinical application. For this reason, we compared our array comparative genomic hybridization (array-CGH) results with those reported in literature for invasive bladder tumors and, in particular, we focused on the evaluation of copy number alterations (CNAs) present in biopsies and retained in the corresponding cancer stem cell (CSC) subpopulations that should be the main target of therapy. According to our data, CCNE1, MYC, MDM2 and PPARG genes could be interesting therapeutic targets for bladder CSC subpopulations. Surprisingly, HER2 copy number gains are not retained in bladder CSCs, making the gene-targeted therapy less interesting than the others. These results provide precious advice for further study on bladder therapy; however, the clinical importance of these results should be explored.


Assuntos
Carcinoma/genética , Variações do Número de Cópias de DNA , Neoplasias da Bexiga Urinária/genética , Carcinoma/tratamento farmacológico , Ciclina E/genética , Humanos , Terapia de Alvo Molecular/métodos , Proteínas Oncogênicas/genética , PPAR gama/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-myc/genética , Receptor ErbB-2/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico
16.
BMC Cancer ; 14: 646, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25178926

RESUMO

BACKGROUND: The existence of two distinct groups of tumors with different clinical characteristic is a remarkable feature of transitional cell carcinomas (TCCs) of the bladder. More than 70% are low-grade (LG) non-infiltrating (NI) cancers at diagnosis, but 60-80% of them recur at least one time and 10-20% progress in stage and grade. On the other hand, about 20% of tumors show muscle invasion (IN) and have a poor prognosis with <50% survival after 5 years. This study focuses on the complexity of the bladder cancer genome, and for the first time to our knowledge, on the possibility to compare genomic alterations of in vitro selected cancer stem-like cells (CSCs), and their original biopsy in order to identify different genomic signature already present in the early stages of tumorigenesis of LG and HG tumors. METHODS: We initially used conventional chromosome analysis on TCC biopsies with different histotypes (LG vs HG) in order to detect rough differences between them. Then, we performed array comparative genomic hybridization (aCGH) on 10 HG and 10 LG tumors providing an overview of copy number alterations (CNAs). Finally, we made a comparison of the overall CNAs in 16 biopsies and their respective CSCs isolated from them. RESULTS: Our findings indicate that LG and HG bladder cancer differ with regard to their genomic profile even in the early stage of tumorigenesis; moreover, we identified a subgroup of LG samples with a higher tendency to lose genomic regions which could represent a more aggressive phenotype. CONCLUSIONS: The outcomes not only provide valuable information to deeper studying TCC carcinogenesis, but also could help in the clinic for diagnosis and prognosis of patients who will benefit from a more aggressive therapy.


Assuntos
Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/patologia , Variações do Número de Cópias de DNA , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Idoso , Idoso de 80 Anos ou mais , Cromossomos Humanos , Hibridização Genômica Comparativa , Feminino , Humanos , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/patologia
17.
HGG Adv ; 5(2): 100261, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38160254

RESUMO

The largest multi-gene family in metazoans is the family of olfactory receptor (OR) genes. Human ORs are organized in clusters over most chromosomes and seem to include >0.1% the human genome. Because 369 out of 856 OR genes are mapped on chromosome 11 (HSA11), we sought to determine whether they mediate structural rearrangements involving this chromosome. To this aim, we analyzed 220 specimens collected during diagnostic procedures involving structural rearrangements of chromosome 11. A total of 222 chromosomal abnormalities were included, consisting of inversions, deletions, translocations, duplications, and one insertion, detected by conventional chromosome analysis and/or fluorescence in situ hybridization (FISH) and array comparative genomic hybridization (array-CGH). We verified by bioinformatics and statistical approaches the occurrence of breakpoints in cytobands with or without OR genes. We found that OR genes are not involved in chromosome 11 reciprocal translocations, suggesting that different DNA motifs and mechanisms based on homology or non-homology recombination can cause chromosome 11 structural alterations. We also considered the proximity between the chromosomal territories of chromosome 11 and its partner chromosomes involved in the translocations by using the deposited Hi-C data concerning the possible occurrence of chromosome interactions. Interestingly, most of the breakpoints are located in regions highly involved in chromosome interactions. Further studies should be carried out to confirm the potential role of chromosome territories' proximity in promoting genome structural variation, so fundamental in our understanding of the molecular basis of medical genetics and evolutionary genetics.


Assuntos
Cromossomos Humanos Par 11 , Receptores Odorantes , Humanos , Hibridização Genômica Comparativa , Hibridização in Situ Fluorescente , Aberrações Cromossômicas , Translocação Genética/genética , Receptores Odorantes/genética
18.
Genes (Basel) ; 14(9)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37761840

RESUMO

Complex chromosomal rearrangements are rare events compatible with survival, consisting of an imbalance and/or position effect of one or more genes, that contribute to a range of clinical presentations. The investigation and diagnosis of these cases are often difficult. The interpretation of the pattern of pairing and segregation of these chromosomes during meiosis is important for the assessment of the risk and the type of imbalance in the offspring. Here, we investigated two unrelated pediatric carriers of complex rearrangements of chromosome 7. The first case was a 2-year-old girl with a severe phenotype. Conventional cytogenetics evidenced a duplication of part of the short arm of chromosome 7. By array-CGH analysis, we found a complex rearrangement with three discontinuous trisomy regions (7p22.1p21.3, 7p21.3, and 7p21.3p15.3). The second case was a newborn investigated for hypodevelopment and dimorphisms. The karyotype analysis promptly revealed a structurally altered chromosome 7. The array-CGH analysis identified an even more complex rearrangement consisting of a trisomic region at 7q11.23q22 and a tetrasomic region of 4.5 Mb spanning 7q21.3 to q22.1. The mother's karyotype examination revealed a complex rearrangement of chromosome 7: the 7q11.23q22 region was inserted in the short arm at 7p15.3. Finally, array-CGH analysis showed a trisomic region that corresponds to the tetrasomic region of the son. Our work proved that the integration of several technical solutions is often required to appropriately analyze complex chromosomal rearrangements in order to understand their implications and offer appropriate genetic counseling.

19.
Biology (Basel) ; 11(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35053068

RESUMO

Glioblastoma (GBM, grade IV glioma) represents the most aggressive brain tumor and patients with GBM have a poor prognosis. Until now surgical resection followed by radiotherapy and temozolomide (TMZ) treatment represents the standard strategy for GBM. We showed that the imidazobenzoxazin-5-thione MV1035 is able to significantly reduce GBM U87-MG cells migration and invasiveness through inhibition of the RNA demethylase ALKBH5. In this work, we focus on the DNA repair protein ALKBH2, a further MV1035 target resulting from SPILLO-PBSS proteome-wide scale in silico analysis. Our data demonstrate that MV1035 inhibits the activity of ALKBH2, known to be involved in GBM TMZ resistance. MV1035 was used on both U87-MG and two patient-derived (PD) glioma stem cells (GSCs): in combination with TMZ, it has a significant synergistic effect in reducing cell viability and sphere formation. Moreover, MV1035 induces a reduction in MGMT expression in PD-GSCs cell lines most likely through a mechanism that acts on MGMT promoter methylation. Taken together our data show that MV1035 could act as an inhibitor potentially helpful to overcome TMZ resistance and able to reduce GBM migration and invasiveness.

20.
Mol Neurobiol ; 59(11): 6857-6873, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36048342

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor with a malignant prognosis. GBM is characterized by high cellular heterogeneity and its progression relies on the interaction with the central nervous system, which ensures the immune-escape and tumor promotion. This interplay induces metabolic, (epi)-genetic and molecular rewiring in both domains. In the present study, we aim to characterize the time-related changes in the GBM landscape, using a syngeneic mouse model of primary GBM. GL261 glioma cells were injected in the right striatum of immuno-competent C57Bl/6 mice and animals were sacrificed after 7, 14, and 21 days (7D, 14D, 21D). The tumor development was assessed through 3D tomographic imaging and brains were processed for immunohistochemistry, immunofluorescence, and western blotting. A human transcriptomic database was inquired to support the translational value of the experimental data. Our results showed the dynamic of the tumor progression, being established as a bulk at 14D and surrounded by a dense scar of reactive astrocytes. The GBM growth was paralleled by the impairment in the microglial/macrophagic recruitment and antigen-presenting functions, while the invasive phase was characterized by changes in the extracellular matrix, as shown by the analysis of tenascin C and metalloproteinase-9. The present study emphasizes the role of the molecular changes in the microenvironment during the GBM progression, fostering the development of novel multi-targeted, time-dependent therapies in an experimental model similar to the human disease.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Evasão Tumoral , Microambiente Tumoral , Animais , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/imunologia , Glioblastoma/patologia , Glioma/imunologia , Glioma/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Tenascina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA